mirror of
https://git.eden-emu.dev/eden-emu/eden.git
synced 2025-07-20 21:05:45 +00:00
225 lines
7.6 KiB
C++
225 lines
7.6 KiB
C++
/*
|
|
* Copyright 2022 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* Test FlowGraph
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "stdio.h"
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <oboe/Oboe.h>
|
|
|
|
#include "flowgraph/resampler/MultiChannelResampler.h"
|
|
|
|
using namespace oboe::resampler;
|
|
|
|
// Measure zero crossings.
|
|
static int32_t countZeroCrossingsWithHysteresis(float *input, int32_t numSamples) {
|
|
const float kHysteresisLevel = 0.25f;
|
|
int zeroCrossingCount = 0;
|
|
int state = 0; // can be -1, 0, +1
|
|
for (int i = 0; i < numSamples; i++) {
|
|
if (input[i] >= kHysteresisLevel) {
|
|
if (state < 0) {
|
|
zeroCrossingCount++;
|
|
}
|
|
state = 1;
|
|
} else if (input[i] <= -kHysteresisLevel) {
|
|
if (state > 0) {
|
|
zeroCrossingCount++;
|
|
}
|
|
state = -1;
|
|
}
|
|
}
|
|
return zeroCrossingCount;
|
|
}
|
|
|
|
static constexpr int kChannelCount = 1;
|
|
|
|
/**
|
|
* Convert a sine wave and then look for glitches.
|
|
* Glitches have a high value in the second derivative.
|
|
*/
|
|
static void checkResampler(int32_t sourceRate, int32_t sinkRate,
|
|
MultiChannelResampler::Quality quality) {
|
|
const int kNumOutputSamples = 10000;
|
|
const double framesPerCycle = 81.379; // target output period
|
|
|
|
int numInputSamples = kNumOutputSamples * sourceRate / sinkRate;
|
|
|
|
std::unique_ptr<float[]> inputBuffer = std::make_unique<float[]>(numInputSamples);
|
|
std::unique_ptr<float[]> outputBuffer = std::make_unique<float[]>(kNumOutputSamples);
|
|
|
|
// Generate a sine wave for input.
|
|
const double kPhaseIncrement = 2.0 * sinkRate / (framesPerCycle * sourceRate);
|
|
double phase = 0.0;
|
|
for (int i = 0; i < numInputSamples; i++) {
|
|
inputBuffer[i] = sin(phase * M_PI);
|
|
phase += kPhaseIncrement;
|
|
while (phase > 1.0) {
|
|
phase -= 2.0;
|
|
}
|
|
}
|
|
int sourceZeroCrossingCount = countZeroCrossingsWithHysteresis(inputBuffer.get(), numInputSamples);
|
|
|
|
// Use a MultiChannelResampler to convert from the sourceRate to the sinkRate.
|
|
std::unique_ptr<MultiChannelResampler> mcResampler;
|
|
mcResampler.reset(MultiChannelResampler::make(kChannelCount,
|
|
sourceRate,
|
|
sinkRate,
|
|
quality));
|
|
int inputFramesLeft = numInputSamples;
|
|
int numRead = 0;
|
|
float *input = inputBuffer.get(); // for iteration
|
|
float *output = outputBuffer.get();
|
|
while (inputFramesLeft > 0) {
|
|
if (mcResampler->isWriteNeeded()) {
|
|
mcResampler->writeNextFrame(input);
|
|
input++;
|
|
inputFramesLeft--;
|
|
} else {
|
|
mcResampler->readNextFrame(output);
|
|
output++;
|
|
numRead++;
|
|
}
|
|
}
|
|
|
|
// Flush out remaining frames from the flowgraph
|
|
while (!mcResampler->isWriteNeeded()) {
|
|
mcResampler->readNextFrame(output);
|
|
output++;
|
|
numRead++;
|
|
}
|
|
|
|
ASSERT_LE(numRead, kNumOutputSamples);
|
|
// Some frames are lost priming the FIR filter.
|
|
const int kMaxAlgorithmicFrameLoss = 5;
|
|
EXPECT_GT(numRead, kNumOutputSamples - kMaxAlgorithmicFrameLoss);
|
|
|
|
int sinkZeroCrossingCount = countZeroCrossingsWithHysteresis(outputBuffer.get(), numRead);
|
|
// The sine wave may be cut off partially. This may cause multiple crossing
|
|
// differences when upsampling.
|
|
const int kMaxZeroCrossingDelta = std::max(sinkRate / sourceRate / 2, 1);
|
|
EXPECT_LE(abs(sourceZeroCrossingCount - sinkZeroCrossingCount), kMaxZeroCrossingDelta);
|
|
|
|
// Detect glitches by looking for spikes in the second derivative.
|
|
output = outputBuffer.get();
|
|
float previousValue = output[0];
|
|
float previousSlope = output[1] - output[0];
|
|
for (int i = 0; i < numRead; i++) {
|
|
float slope = output[i] - previousValue;
|
|
float slopeDelta = fabs(slope - previousSlope);
|
|
// Skip a few samples because there are often some steep slope changes at the beginning.
|
|
if (i > 10) {
|
|
EXPECT_LT(slopeDelta, 0.1);
|
|
}
|
|
previousValue = output[i];
|
|
previousSlope = slope;
|
|
}
|
|
|
|
#if 0
|
|
// Save to disk for inspection.
|
|
FILE *fp = fopen( "/sdcard/Download/src_float_out.raw" , "wb" );
|
|
fwrite(outputBuffer.get(), sizeof(float), numRead, fp );
|
|
fclose(fp);
|
|
#endif
|
|
}
|
|
|
|
|
|
TEST(test_resampler, resampler_scan_all) {
|
|
const int rates[] = {8000, 11025, 22050, 32000, 44100, 48000, 64000, 88200, 96000};
|
|
const MultiChannelResampler::Quality qualities[] =
|
|
{
|
|
MultiChannelResampler::Quality::Fastest,
|
|
MultiChannelResampler::Quality::Low,
|
|
MultiChannelResampler::Quality::Medium,
|
|
MultiChannelResampler::Quality::High,
|
|
MultiChannelResampler::Quality::Best
|
|
};
|
|
for (int srcRate : rates) {
|
|
for (int destRate : rates) {
|
|
for (auto quality : qualities) {
|
|
if (srcRate != destRate) {
|
|
checkResampler(srcRate, destRate, quality);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(test_resampler, resampler_8000_11025_best) {
|
|
checkResampler(8000, 11025, MultiChannelResampler::Quality::Best);
|
|
}
|
|
TEST(test_resampler, resampler_8000_48000_best) {
|
|
checkResampler(8000, 48000, MultiChannelResampler::Quality::Best);
|
|
}
|
|
|
|
TEST(test_resampler, resampler_8000_44100_best) {
|
|
checkResampler(8000, 44100, MultiChannelResampler::Quality::Best);
|
|
}
|
|
|
|
TEST(test_resampler, resampler_11025_24000_best) {
|
|
checkResampler(11025, 24000, MultiChannelResampler::Quality::Best);
|
|
}
|
|
|
|
TEST(test_resampler, resampler_11025_48000_fastest) {
|
|
checkResampler(11025, 48000, MultiChannelResampler::Quality::Fastest);
|
|
}
|
|
TEST(test_resampler, resampler_11025_48000_low) {
|
|
checkResampler(11025, 48000, MultiChannelResampler::Quality::Low);
|
|
}
|
|
TEST(test_resampler, resampler_11025_48000_medium) {
|
|
checkResampler(11025, 48000, MultiChannelResampler::Quality::Medium);
|
|
}
|
|
TEST(test_resampler, resampler_11025_48000_high) {
|
|
checkResampler(11025, 48000, MultiChannelResampler::Quality::High);
|
|
}
|
|
|
|
TEST(test_resampler, resampler_11025_48000_best) {
|
|
checkResampler(11025, 48000, MultiChannelResampler::Quality::Best);
|
|
}
|
|
|
|
TEST(test_resampler, resampler_11025_44100_best) {
|
|
checkResampler(11025, 44100, MultiChannelResampler::Quality::Best);
|
|
}
|
|
|
|
TEST(test_resampler, resampler_11025_88200_best) {
|
|
checkResampler(11025, 88200, MultiChannelResampler::Quality::Best);
|
|
}
|
|
|
|
TEST(test_resampler, resampler_16000_48000_best) {
|
|
checkResampler(16000, 48000, MultiChannelResampler::Quality::Best);
|
|
}
|
|
|
|
TEST(test_resampler, resampler_44100_48000_low) {
|
|
checkResampler(44100, 48000, MultiChannelResampler::Quality::Low);
|
|
}
|
|
TEST(test_resampler, resampler_44100_48000_best) {
|
|
checkResampler(44100, 48000, MultiChannelResampler::Quality::Best);
|
|
}
|
|
|
|
// Look for glitches when downsampling.
|
|
TEST(test_resampler, resampler_48000_11025_best) {
|
|
checkResampler(48000, 11025, MultiChannelResampler::Quality::Best);
|
|
}
|
|
TEST(test_resampler, resampler_48000_44100_best) {
|
|
checkResampler(48000, 44100, MultiChannelResampler::Quality::Best);
|
|
}
|
|
TEST(test_resampler, resampler_44100_11025_best) {
|
|
checkResampler(44100, 11025, MultiChannelResampler::Quality::Best);
|
|
}
|