mirror of
https://git.eden-emu.dev/eden-emu/eden.git
synced 2025-07-20 16:25:45 +00:00
269 lines
8.9 KiB
C++
269 lines
8.9 KiB
C++
/*
|
|
* Copyright 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* Test FlowGraph
|
|
*/
|
|
|
|
#include "stdio.h"
|
|
|
|
#include <gtest/gtest.h>
|
|
#include <oboe/Oboe.h>
|
|
|
|
#include "flowgraph/ClipToRange.h"
|
|
#include "flowgraph/Limiter.h"
|
|
#include "flowgraph/MonoToMultiConverter.h"
|
|
#include "flowgraph/SourceFloat.h"
|
|
#include "flowgraph/RampLinear.h"
|
|
#include "flowgraph/SinkFloat.h"
|
|
#include "flowgraph/SinkI16.h"
|
|
#include "flowgraph/SinkI24.h"
|
|
#include "flowgraph/SinkI32.h"
|
|
#include "flowgraph/SourceI16.h"
|
|
#include "flowgraph/SourceI24.h"
|
|
|
|
using namespace oboe::flowgraph;
|
|
|
|
constexpr int kBytesPerI24Packed = 3;
|
|
|
|
TEST(test_flowgraph, module_sinki16) {
|
|
static const float input[] = {1.0f, 0.5f, -0.25f, -1.0f, 0.0f, 53.9f, -87.2f};
|
|
static const int16_t expected[] = {32767, 16384, -8192, -32768, 0, 32767, -32768};
|
|
int16_t output[20];
|
|
SourceFloat sourceFloat{1};
|
|
SinkI16 sinkI16{1};
|
|
|
|
int numInputFrames = sizeof(input) / sizeof(input[0]);
|
|
sourceFloat.setData(input, numInputFrames);
|
|
sourceFloat.output.connect(&sinkI16.input);
|
|
|
|
int numOutputFrames = sizeof(output) / sizeof(int16_t);
|
|
int32_t numRead = sinkI16.read(output, numOutputFrames);
|
|
ASSERT_EQ(numInputFrames, numRead);
|
|
for (int i = 0; i < numRead; i++) {
|
|
EXPECT_EQ(expected[i], output[i]);
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_mono_to_stereo) {
|
|
static const float input[] = {1.0f, 2.0f, 3.0f};
|
|
float output[100] = {};
|
|
SourceFloat sourceFloat{1};
|
|
MonoToMultiConverter monoToStereo{2};
|
|
SinkFloat sinkFloat{2};
|
|
|
|
sourceFloat.setData(input, 3);
|
|
|
|
sourceFloat.output.connect(&monoToStereo.input);
|
|
monoToStereo.output.connect(&sinkFloat.input);
|
|
|
|
int32_t numRead = sinkFloat.read(output, 8);
|
|
ASSERT_EQ(3, numRead);
|
|
EXPECT_EQ(input[0], output[0]);
|
|
EXPECT_EQ(input[0], output[1]);
|
|
EXPECT_EQ(input[1], output[2]);
|
|
EXPECT_EQ(input[1], output[3]);
|
|
}
|
|
|
|
TEST(test_flowgraph, module_ramp_linear) {
|
|
constexpr int singleNumOutput = 1;
|
|
constexpr int rampSize = 5;
|
|
constexpr int numOutput = 100;
|
|
constexpr float value = 1.0f;
|
|
constexpr float initialTarget = 10.0f;
|
|
constexpr float finalTarget = 100.0f;
|
|
constexpr float tolerance = 0.0001f; // arbitrary
|
|
float output[numOutput] = {};
|
|
RampLinear rampLinear{1};
|
|
SinkFloat sinkFloat{1};
|
|
|
|
rampLinear.input.setValue(value);
|
|
rampLinear.setLengthInFrames(rampSize);
|
|
rampLinear.output.connect(&sinkFloat.input);
|
|
|
|
// Check that the values go to the initial target instantly.
|
|
rampLinear.setTarget(initialTarget);
|
|
int32_t singleNumRead = sinkFloat.read(output, singleNumOutput);
|
|
ASSERT_EQ(singleNumRead, singleNumOutput);
|
|
EXPECT_NEAR(value * initialTarget, output[0], tolerance);
|
|
|
|
// Now set target and check that the linear ramp works as expected.
|
|
rampLinear.setTarget(finalTarget);
|
|
int32_t numRead = sinkFloat.read(output, numOutput);
|
|
const float incrementSize = (finalTarget - initialTarget) / rampSize;
|
|
ASSERT_EQ(numOutput, numRead);
|
|
|
|
int i = 0;
|
|
for (; i < rampSize; i++) {
|
|
float expected = value * (initialTarget + i * incrementSize);
|
|
EXPECT_NEAR(expected, output[i], tolerance);
|
|
}
|
|
for (; i < numOutput; i++) {
|
|
float expected = value * finalTarget;
|
|
EXPECT_NEAR(expected, output[i], tolerance);
|
|
}
|
|
}
|
|
|
|
// It is easiest to represent packed 24-bit data as a byte array.
|
|
// This test will read from input, convert to float, then write
|
|
// back to output as bytes.
|
|
TEST(test_flowgraph, module_packed_24) {
|
|
static const uint8_t input[] = {0x01, 0x23, 0x45,
|
|
0x67, 0x89, 0xAB,
|
|
0xCD, 0xEF, 0x5A};
|
|
uint8_t output[99] = {};
|
|
SourceI24 sourceI24{1};
|
|
SinkI24 sinkI24{1};
|
|
|
|
int numInputFrames = sizeof(input) / kBytesPerI24Packed;
|
|
sourceI24.setData(input, numInputFrames);
|
|
sourceI24.output.connect(&sinkI24.input);
|
|
|
|
int32_t numRead = sinkI24.read(output, sizeof(output) / kBytesPerI24Packed);
|
|
ASSERT_EQ(numInputFrames, numRead);
|
|
for (size_t i = 0; i < sizeof(input); i++) {
|
|
EXPECT_EQ(input[i], output[i]);
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_clip_to_range) {
|
|
constexpr float myMin = -2.0f;
|
|
constexpr float myMax = 1.5f;
|
|
|
|
static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3};
|
|
static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax};
|
|
float output[100];
|
|
SourceFloat sourceFloat{1};
|
|
ClipToRange clipper{1};
|
|
SinkFloat sinkFloat{1};
|
|
|
|
int numInputFrames = sizeof(input) / sizeof(input[0]);
|
|
sourceFloat.setData(input, numInputFrames);
|
|
|
|
clipper.setMinimum(myMin);
|
|
clipper.setMaximum(myMax);
|
|
|
|
sourceFloat.output.connect(&clipper.input);
|
|
clipper.output.connect(&sinkFloat.input);
|
|
|
|
int numOutputFrames = sizeof(output) / sizeof(output[0]);
|
|
int32_t numRead = sinkFloat.read(output, numOutputFrames);
|
|
ASSERT_EQ(numInputFrames, numRead);
|
|
constexpr float tolerance = 0.000001f; // arbitrary
|
|
for (int i = 0; i < numRead; i++) {
|
|
EXPECT_NEAR(expected[i], output[i], tolerance);
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_sinki32) {
|
|
static constexpr int kNumSamples = 8;
|
|
static const float input[] = {
|
|
1.0f, 0.5f, -0.25f, -1.0f,
|
|
0.0f, 53.9f, -87.2f, -1.02f};
|
|
static const int32_t expected[] = {
|
|
INT32_MAX, 1 << 30, INT32_MIN / 4, INT32_MIN,
|
|
0, INT32_MAX, INT32_MIN, INT32_MIN};
|
|
int32_t output[kNumSamples + 10]; // larger than input
|
|
|
|
SourceFloat sourceFloat{1};
|
|
SinkI32 sinkI32{1};
|
|
|
|
sourceFloat.setData(input, kNumSamples);
|
|
sourceFloat.output.connect(&sinkI32.input);
|
|
|
|
int numOutputFrames = sizeof(output) / sizeof(int32_t);
|
|
int32_t numRead = sinkI32.read(output, numOutputFrames);
|
|
ASSERT_EQ(kNumSamples, numRead);
|
|
for (int i = 0; i < numRead; i++) {
|
|
EXPECT_EQ(expected[i], output[i]) << ", i = " << i;
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_limiter) {
|
|
constexpr int kNumSamples = 101;
|
|
constexpr float kLastSample = 3.0f;
|
|
constexpr float kFirstSample = -kLastSample;
|
|
constexpr float kDeltaBetweenSamples = (kLastSample - kFirstSample) / (kNumSamples - 1);
|
|
constexpr float kTolerance = 0.00001f;
|
|
|
|
float input[kNumSamples];
|
|
float output[kNumSamples];
|
|
SourceFloat sourceFloat{1};
|
|
Limiter limiter{1};
|
|
SinkFloat sinkFloat{1};
|
|
|
|
for (int i = 0; i < kNumSamples; i++) {
|
|
input[i] = kFirstSample + i * kDeltaBetweenSamples;
|
|
}
|
|
|
|
const int numInputFrames = std::size(input);
|
|
sourceFloat.setData(input, numInputFrames);
|
|
|
|
sourceFloat.output.connect(&limiter.input);
|
|
limiter.output.connect(&sinkFloat.input);
|
|
|
|
const int numOutputFrames = std::size(output);
|
|
int32_t numRead = sinkFloat.read(output, numOutputFrames);
|
|
ASSERT_EQ(numInputFrames, numRead);
|
|
|
|
for (int i = 0; i < numRead; i++) {
|
|
// limiter must be symmetric wrt 0.
|
|
EXPECT_NEAR(output[i], -output[kNumSamples - i - 1], kTolerance);
|
|
if (i > 0) {
|
|
EXPECT_GE(output[i], output[i - 1]); // limiter must be monotonic
|
|
}
|
|
if (input[i] == 0.f) {
|
|
EXPECT_EQ(0.f, output[i]);
|
|
} else if (input[i] > 0.0f) {
|
|
EXPECT_GE(output[i], 0.0f);
|
|
EXPECT_LE(output[i], M_SQRT2); // limiter actually limits
|
|
EXPECT_LE(output[i], input[i]); // a limiter, gain <= 1
|
|
} else {
|
|
EXPECT_LE(output[i], 0.0f);
|
|
EXPECT_GE(output[i], -M_SQRT2); // limiter actually limits
|
|
EXPECT_GE(output[i], input[i]); // a limiter, gain <= 1
|
|
}
|
|
if (-1.f <= input[i] && input[i] <= 1.f) {
|
|
EXPECT_EQ(input[i], output[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST(test_flowgraph, module_limiter_nan) {
|
|
constexpr int kArbitraryOutputSize = 100;
|
|
constexpr float kFloatNan = NAN;
|
|
static const float input[] = {kFloatNan, 0.5f, kFloatNan, kFloatNan, -10.0f, kFloatNan};
|
|
static const float expected[] = {0.0f, 0.5f, 0.5f, 0.5f, -M_SQRT2, -M_SQRT2};
|
|
constexpr float tolerance = 0.00001f;
|
|
float output[kArbitraryOutputSize];
|
|
SourceFloat sourceFloat{1};
|
|
Limiter limiter{1};
|
|
SinkFloat sinkFloat{1};
|
|
|
|
const int numInputFrames = std::size(input);
|
|
sourceFloat.setData(input, numInputFrames);
|
|
|
|
sourceFloat.output.connect(&limiter.input);
|
|
limiter.output.connect(&sinkFloat.input);
|
|
|
|
const int numOutputFrames = std::size(output);
|
|
int32_t numRead = sinkFloat.read(output, numOutputFrames);
|
|
ASSERT_EQ(numInputFrames, numRead);
|
|
|
|
for (int i = 0; i < numRead; i++) {
|
|
EXPECT_NEAR(expected[i], output[i], tolerance);
|
|
}
|
|
}
|