eden/externals/breakpad/src/processor/disassembler_objdump.cc
swurl 6c655321e6
Move dead submodules in-tree
Signed-off-by: swurl <swurl@swurl.xyz>
2025-05-31 02:33:02 -04:00

487 lines
No EOL
16 KiB
C++

// Copyright (c) 2022, Google LLC
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google LLC nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// disassembler_objdump.: Disassembler that invokes objdump for disassembly.
//
// Author: Mark Brand
#ifdef HAVE_CONFIG_H
#include <config.h> // Must come first
#endif
#include "processor/disassembler_objdump.h"
#include <unistd.h>
#include <sys/wait.h>
#include <array>
#include <fstream>
#include <iostream>
#include <iterator>
#include <regex>
#include <sstream>
#include <vector>
#include "common/linux/eintr_wrapper.h"
#include "common/linux/scoped_pipe.h"
#include "common/linux/scoped_tmpfile.h"
#include "processor/logging.h"
namespace google_breakpad {
namespace {
const size_t kMaxX86InstructionLength = 15;
bool IsInstructionPrefix(const string& token) {
if (token == "lock" || token == "rep" || token == "repz" ||
token == "repnz") {
return true;
}
return false;
}
bool IsOperandSize(const string& token) {
if (token == "BYTE" || token == "WORD" || token == "DWORD" ||
token == "QWORD" || token == "PTR") {
return true;
}
return false;
}
bool GetSegmentAddressX86(const DumpContext& context, string segment_name,
uint64_t& address) {
if (segment_name == "ds") {
address = context.GetContextX86()->ds;
} else if (segment_name == "es") {
address = context.GetContextX86()->es;
} else if (segment_name == "fs") {
address = context.GetContextX86()->fs;
} else if (segment_name == "gs") {
address = context.GetContextX86()->gs;
} else {
BPLOG(ERROR) << "Unsupported segment register: " << segment_name;
return false;
}
return true;
}
bool GetSegmentAddressAMD64(const DumpContext& context, string segment_name,
uint64_t& address) {
if (segment_name == "ds") {
address = 0;
} else if (segment_name == "es") {
address = 0;
} else {
BPLOG(ERROR) << "Unsupported segment register: " << segment_name;
return false;
}
return true;
}
bool GetSegmentAddress(const DumpContext& context, string segment_name,
uint64_t& address) {
if (context.GetContextCPU() == MD_CONTEXT_X86) {
return GetSegmentAddressX86(context, segment_name, address);
} else if (context.GetContextCPU() == MD_CONTEXT_AMD64) {
return GetSegmentAddressAMD64(context, segment_name, address);
} else {
BPLOG(ERROR) << "Unsupported architecture for GetSegmentAddress\n";
return false;
}
}
bool GetRegisterValueX86(const DumpContext& context, string register_name,
uint64_t& value) {
if (register_name == "eax") {
value = context.GetContextX86()->eax;
} else if (register_name == "ebx") {
value = context.GetContextX86()->ebx;
} else if (register_name == "ecx") {
value = context.GetContextX86()->ecx;
} else if (register_name == "edx") {
value = context.GetContextX86()->edx;
} else if (register_name == "edi") {
value = context.GetContextX86()->edi;
} else if (register_name == "esi") {
value = context.GetContextX86()->esi;
} else if (register_name == "ebp") {
value = context.GetContextX86()->ebp;
} else if (register_name == "esp") {
value = context.GetContextX86()->esp;
} else if (register_name == "eip") {
value = context.GetContextX86()->eip;
} else {
BPLOG(ERROR) << "Unsupported register: " << register_name;
return false;
}
return true;
}
bool GetRegisterValueAMD64(const DumpContext& context, string register_name,
uint64_t& value) {
if (register_name == "rax") {
value = context.GetContextAMD64()->rax;
} else if (register_name == "rbx") {
value = context.GetContextAMD64()->rbx;
} else if (register_name == "rcx") {
value = context.GetContextAMD64()->rcx;
} else if (register_name == "rdx") {
value = context.GetContextAMD64()->rdx;
} else if (register_name == "rdi") {
value = context.GetContextAMD64()->rdi;
} else if (register_name == "rsi") {
value = context.GetContextAMD64()->rsi;
} else if (register_name == "rbp") {
value = context.GetContextAMD64()->rbp;
} else if (register_name == "rsp") {
value = context.GetContextAMD64()->rsp;
} else if (register_name == "r8") {
value = context.GetContextAMD64()->r8;
} else if (register_name == "r9") {
value = context.GetContextAMD64()->r9;
} else if (register_name == "r10") {
value = context.GetContextAMD64()->r10;
} else if (register_name == "r11") {
value = context.GetContextAMD64()->r11;
} else if (register_name == "r12") {
value = context.GetContextAMD64()->r12;
} else if (register_name == "r13") {
value = context.GetContextAMD64()->r13;
} else if (register_name == "r14") {
value = context.GetContextAMD64()->r14;
} else if (register_name == "r15") {
value = context.GetContextAMD64()->r15;
} else if (register_name == "rip") {
value = context.GetContextAMD64()->rip;
} else {
BPLOG(ERROR) << "Unsupported register: " << register_name;
return false;
}
return true;
}
// Lookup the value of `register_name` in `context`, store it into `value` on
// success.
// Support for non-full-size registers not implemented, since we're only using
// this to evaluate address expressions.
bool GetRegisterValue(const DumpContext& context, string register_name,
uint64_t& value) {
if (context.GetContextCPU() == MD_CONTEXT_X86) {
return GetRegisterValueX86(context, register_name, value);
} else if (context.GetContextCPU() == MD_CONTEXT_AMD64) {
return GetRegisterValueAMD64(context, register_name, value);
} else {
BPLOG(ERROR) << "Unsupported architecture for GetRegisterValue\n";
return false;
}
}
} // namespace
// static
bool DisassemblerObjdump::DisassembleInstruction(uint32_t cpu,
const uint8_t* raw_bytes,
unsigned int raw_bytes_len,
string& instruction) {
// Always initialize outputs
instruction = "";
if (!raw_bytes || raw_bytes_len == 0) {
// There's no need to perform any operation in this case, as there's
// clearly no instruction there.
return false;
}
string architecture;
if (cpu == MD_CONTEXT_X86) {
architecture = "i386";
} else if (cpu == MD_CONTEXT_AMD64) {
architecture = "i386:x86-64";
} else {
BPLOG(ERROR) << "Unsupported architecture.";
return false;
}
// Create a temporary file for the raw instruction bytes to pass to
// objdump, and write the bytes to the input file.
ScopedTmpFile raw_bytes_file;
if (!raw_bytes_file.InitData(raw_bytes, raw_bytes_len)) {
BPLOG(ERROR) << "Failed creating temporary file.";
return false;
}
// Create a pipe to use to read the disassembly back from objdump.
ScopedPipe disassembly_pipe;
if (!disassembly_pipe.Init()) {
BPLOG(ERROR) << "Failed creating pipe for output.";
return false;
}
pid_t child_pid = fork();
if (child_pid < 0) {
BPLOG(ERROR) << "Fork failed.";
return false;
}
if (child_pid == 0) {
// In the child process, set up the input and output file descriptors.
if (dup2(raw_bytes_file.GetFd(), STDIN_FILENO) < 0 ||
disassembly_pipe.Dup2WriteFd(STDOUT_FILENO) < 0 ||
disassembly_pipe.Dup2WriteFd(STDERR_FILENO) < 0) {
BPLOG(ERROR) << "Failed dup'ing file descriptors.";
exit(-1);
}
// We need to close the read end of the pipe in the child process so that
// when the parent closes it, the pipe is disconnected.
disassembly_pipe.CloseReadFd();
// We use "/proc/self/fd/0" here to allow objdump to parse an unnamed file,
// since objdump does not have a mode to read from stdin. This cannot be
// used with a pipe, since objdump requires that the input is a standard
// file.
execlp("objdump", "objdump", "-D", "--no-show-raw-insn", "-b", "binary",
"-M", "intel", "-m", architecture.c_str(), "/proc/self/fd/0",
nullptr);
BPLOG(ERROR) << "Failed to exec objdump.";
exit(-1);
} else {
// In the parent process, parse the objdump output.
// Match the instruction line, from:
// 0: lock cmpxchg DWORD PTR [esi+0x10],eax
// extract the string "lock cmpxchg DWORD PTR [esi+0x10],eax"
std::regex instruction_regex(
"^\\s+[0-9a-f]+:\\s+" // " 0:"
"((?:\\s*\\S*)+)$"); // "lock cmpxchg..."
std::string line;
std::smatch match;
while (disassembly_pipe.ReadLine(line)) {
if (std::regex_match(line, match, instruction_regex)) {
instruction = match[1].str();
break;
}
}
// Close the read pipe so that objdump will exit (in case we broke out of
// the loop above before reading all of the output).
disassembly_pipe.CloseReadFd();
// Now wait for objdump to exit.
int status = 0;
HANDLE_EINTR(waitpid(child_pid, &status, 0));
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
BPLOG(ERROR) << "objdump didn't run successfully.";
return false;
}
if (instruction == "") {
BPLOG(ERROR) << "Failed to find instruction in objdump output.";
return false;
}
}
return true;
}
// static
bool DisassemblerObjdump::TokenizeInstruction(const string& instruction,
string& operation, string& dest,
string& src) {
// Always initialize outputs.
operation = "";
dest = "";
src = "";
// Split the instruction into tokens by either whitespace or comma.
std::regex token_regex("((?:[^\\s,]+)|,)(?:\\s)*");
std::sregex_iterator tokens_begin(instruction.begin(), instruction.end(),
token_regex);
bool found_comma = false;
for (auto tokens_iter = tokens_begin; tokens_iter != std::sregex_iterator();
++tokens_iter) {
auto token = (*tokens_iter)[1].str();
if (operation.size() == 0) {
if (IsInstructionPrefix(token))
continue;
operation = token;
} else if (dest.size() == 0) {
if (IsOperandSize(token))
continue;
dest = token;
} else if (!found_comma) {
if (token == ",") {
found_comma = true;
} else {
BPLOG(ERROR) << "Failed to parse operands from objdump output, expected"
" comma but found \""
<< token << "\"";
return false;
}
} else if (src.size() == 0) {
if (IsOperandSize(token))
continue;
src = token;
} else {
if (token == ",") {
BPLOG(ERROR) << "Failed to parse operands from objdump output, found "
"unexpected comma after last operand.";
return false;
} else {
// We just ignore other junk after the last operand unless it's a
// comma, which would indicate we're probably still in the middle
// of the operands and something has gone wrong
}
}
}
if (found_comma && src.size() == 0) {
BPLOG(ERROR) << "Failed to parse operands from objdump output, found comma "
"but no src operand.";
return false;
}
return true;
}
// static
bool DisassemblerObjdump::CalculateAddress(const DumpContext& context,
const string& expression,
uint64_t& address) {
address = 0;
// Extract the components of the expression.
// fs:[esi+edi*4+0x80] -> ["fs", "esi", "edi", "4", "-", "0x80"]
std::regex expression_regex(
"^(?:(\\ws):)?" // "fs:"
"\\[(\\w+)" // "[esi"
"(?:\\+(\\w+)(?:\\*(\\d+)))?" // "+edi*4"
"(?:([\\+-])(0x[0-9a-f]+))?" // "-0x80"
"\\]$"); // "]"
std::smatch match;
if (!std::regex_match(expression, match, expression_regex) ||
match.size() != 7) {
return false;
}
string segment_name = match[1].str();
string register_name = match[2].str();
string index_name = match[3].str();
string index_stride = match[4].str();
string offset_sign = match[5].str();
string offset = match[6].str();
uint64_t segment_address = 0;
uint64_t register_value = 0;
uint64_t index_value = 0;
uint64_t index_stride_value = 1;
uint64_t offset_value = 0;
if (segment_name.size() &&
!GetSegmentAddress(context, segment_name, segment_address)) {
return false;
}
if (!GetRegisterValue(context, register_name, register_value)) {
return false;
}
if (index_name.size() &&
!GetRegisterValue(context, index_name, index_value)) {
return false;
}
if (index_stride.size()) {
index_stride_value = strtoull(index_stride.c_str(), nullptr, 0);
}
if (offset.size()) {
offset_value = strtoull(offset.c_str(), nullptr, 0);
}
address =
segment_address + register_value + (index_value * index_stride_value);
if (offset_sign == "+") {
address += offset_value;
} else if (offset_sign == "-") {
address -= offset_value;
}
return true;
}
DisassemblerObjdump::DisassemblerObjdump(const uint32_t cpu,
const MemoryRegion* memory_region,
uint64_t address) {
if (address < memory_region->GetBase() ||
memory_region->GetBase() + memory_region->GetSize() <= address) {
return;
}
uint8_t ip_bytes[kMaxX86InstructionLength] = {0};
size_t ip_bytes_length;
for (ip_bytes_length = 0; ip_bytes_length < kMaxX86InstructionLength;
++ip_bytes_length) {
// We have to read byte-by-byte here, since we still want to try and
// disassemble an instruction even if we don't have enough bytes.
if (!memory_region->GetMemoryAtAddress(address + ip_bytes_length,
&ip_bytes[ip_bytes_length])) {
break;
}
}
string instruction;
if (!DisassembleInstruction(cpu, ip_bytes, kMaxX86InstructionLength,
instruction)) {
return;
}
if (!TokenizeInstruction(instruction, operation_, dest_, src_)) {
return;
}
}
bool DisassemblerObjdump::CalculateSrcAddress(const DumpContext& context,
uint64_t& address) {
return CalculateAddress(context, src_, address);
}
bool DisassemblerObjdump::CalculateDestAddress(const DumpContext& context,
uint64_t& address) {
return CalculateAddress(context, dest_, address);
}
} // namespace google_breakpad