Move dead submodules in-tree

Signed-off-by: swurl <swurl@swurl.xyz>
This commit is contained in:
swurl 2025-05-31 02:33:02 -04:00
parent c0cceff365
commit 6c655321e6
No known key found for this signature in database
GPG key ID: A5A7629F109C8FD1
4081 changed files with 1185566 additions and 45 deletions

View file

@ -0,0 +1,78 @@
cmake_minimum_required(VERSION 3.4.1)
include_directories(third_party)
include_directories(src/main/cpp/)
add_library( native-lib
SHARED
# main game files
src/main/cpp/native-lib.cpp
src/main/cpp/Game.cpp
# audio engine
src/main/cpp/audio/AAssetDataSource.cpp
src/main/cpp/audio/Player.cpp
# UI engine
src/main/cpp/ui/OpenGLFunctions.cpp
# utility functions
src/main/cpp/utils/logging.h
src/main/cpp/utils/UtilityFunctions.cpp
)
set (TARGET_LIBS log android oboe GLESv2)
if(${USE_FFMPEG})
MESSAGE(STATUS "Using FFmpeg extractor")
add_definitions(-DUSE_FFMPEG=1)
target_sources( native-lib PRIVATE src/main/cpp/audio/FFMpegExtractor.cpp )
# Add the local path to FFmpeg, you can use the ${ANDROID_ABI} variable to specify the ABI name
# e.g. /Users/donturner/Code/ffmpeg/build/${ANDROID_ABI}
set(FFMPEG_DIR "/path/to/ffmpeg")
include_directories(native-lib ${FFMPEG_DIR}/include)
add_library( avformat SHARED IMPORTED)
set_target_properties(avformat PROPERTIES IMPORTED_LOCATION
${FFMPEG_DIR}/lib/libavformat.so)
add_library( avutil SHARED IMPORTED)
set_target_properties(avutil PROPERTIES IMPORTED_LOCATION
${FFMPEG_DIR}/lib/libavutil.so)
add_library( avcodec SHARED IMPORTED)
set_target_properties(avcodec PROPERTIES IMPORTED_LOCATION
${FFMPEG_DIR}/lib/libavcodec.so)
add_library( swresample SHARED IMPORTED)
set_target_properties(swresample PROPERTIES IMPORTED_LOCATION
${FFMPEG_DIR}/lib/libswresample.so)
set (TARGET_LIBS ${TARGET_LIBS} avformat avutil avcodec swresample)
else()
MESSAGE(STATUS "Using NDK media extractor")
add_definitions(-DUSE_FFMPEG=0)
target_sources( native-lib PRIVATE src/main/cpp/audio/NDKExtractor.cpp )
set (TARGET_LIBS ${TARGET_LIBS} mediandk)
endif()
target_link_libraries(native-lib ${TARGET_LIBS} )
target_link_options(native-lib PRIVATE "-Wl,-z,max-page-size=16384")
# Set the path to the Oboe directory.
set (OBOE_DIR ../..)
# Add the Oboe library as a subdirectory in your project.
add_subdirectory (${OBOE_DIR} ./oboe-bin)
# Specify the path to the Oboe header files.
include_directories (${OBOE_DIR}/include ${OBOE_DIR}/samples)
# Enable optimization flags: if having problems with source level debugging,
# disable -Ofast ( and debug ), re-enable after done debugging.
target_compile_options(native-lib
PRIVATE -std=c++17 -Wall -Werror "$<$<CONFIG:RELEASE>:-Ofast>")

View file

@ -0,0 +1,92 @@
Rhythm Game sample
==================
This sample demonstrates how to build a simple musical game. The objective of the game is to clap in time to a song by copying what you hear. You do this by listening to the clap sounds, then tapping on the screen to copy those claps.
For a step-by-step guide on how this game works and how to build it check out this codelab: [Build a Musical Game using Oboe](https://developer.android.com/codelabs/musicalgame-using-oboe).
Screenshots
-----------
The UI is deliberately very simple - just tap anywhere in the grey area after hearing the claps. The UI will change color to indicate the game state. The colors are:
- Yellow: Game is loading (assets are being decompressed)
- Grey: Game is being played
- Orange: You tapped too early
- Green: You tapped on time
- Purple: You tapped too late
- Red: There was a problem loading the game (check logcat output)
![RhythmGame Screenshot](images/RhythmGame-screenshot.png)
### Audio timeline
![Game timeline](images/1-timeline.png "Game timeline")
The game plays the clap sounds on the first 3 beats of the bar. These are played in time with the backing track.
When the user taps on the screen, a clap sound is played and the game checks whether the tap occurred within an acceptable time window.
### Architecture
![Game architecture](images/2-architecture.png "Game architecture")
Oboe provides the [`AudioStream`](https://github.com/google/oboe/blob/main/include/oboe/AudioStream.h) class and associated objects to allow the sample to output audio data to the audio device. All other objects are provided by the sample.
Each time the `AudioStream` needs more audio data it calls [`AudioDataCallback::onAudioReady`](https://github.com/google/oboe/blob/main/include/oboe/AudioStreamCallback.h). This passes a container array named `audioData` to the `Game` object which must then fill the array with `numFrames` of audio frames.
![onAudioReady signature](images/3-audioData.png "onAudioReady signature")
### Latency optimizations
The sample uses the following optimizations to obtain a low latency audio stream:
- Performance mode set to [Low Latency](https://github.com/google/oboe/blob/main/FullGuide.md#setting-performance-mode)
- Sharing mode set to [Exclusive](https://github.com/google/oboe/blob/main/FullGuide.md#sharing-mode)
- Buffer size set to twice the number of frames in a burst (double buffering)
### Audio rendering
The `IRenderableAudio` interface (abstract class) represents objects which can produce frames of audio data. The `Player` and `Mixer` objects both implement this interface.
Both the clap sound and backing tracks are represented by `Player` objects which are then mixed together using a `Mixer`.
![Audio rendering](images/4-audio-rendering.png "Audio rendering")
### Sharing objects with the audio thread
It is very important that the audio thread (which calls the `onAudioReady` method) is never blocked. Blocking can cause underruns and audio glitches. To avoid blocking we use a `LockFreeQueue` to share information between the audio thread and other threads. The following diagram shows how claps are enqueued by pushing the clap times (in milliseconds) onto the queue, then dequeuing the clap time when the clap is played.
![Lock free queue](images/5-lockfreequeue.png "Lock free queue")
We also use [atomics](http://en.cppreference.com/w/cpp/atomic/atomic) to ensure that threads see a consistent view of any shared primitives.
### Keeping UI events and audio in sync
When a tap event arrives on the UI thread it only contains the time (milliseconds since boot) that the event occurred. We need to figure out what the song position was when the tap occurred.
To do this we keep track of the song position and the time it was last updated. These values are updated each time the `onAudioReady` method is called. This enables us to keep the UI in sync with the audio timeline.
![Audio/UI synchronization](images/6-audio-ui-sync.png "Audio/UI synchronization")
### Calculating whether a tap was successful
Once we know when the user tapped in the song, we can calculate whether that tap was successful i.e whether it fell within an acceptable time range. This range is known as the "tap window".
![Tap window calculation](images/7-tap-window.png "Tap window calculation")
Once we know the result of the tap the UI is updated with a color to give the user visual feedback. This is done in `getTapResult`.
Note that once a tap has been received the tap window is removed from the queue - the user only gets one chance to get their tap right!
### Use of compressed audio assets
In order to reduce APK size this game uses MP3 files for its audio assets. These are extracted on game startup in `AAssetDataSource::newFromCompressedAsset`. A yellow screen will be shown during this process.
By default the game uses `NDKExtractor` for asset extraction and decoding. Under the hood this uses the [NDK Media APIs](https://developer.android.com/ndk/reference/group/media).
There are some limitations with this approach:
- Only available on API 21 and above
- No resampling: The extracted output format will match the input format of the MP3. In this case a sample rate of 48000. If your audio stream's sample rate doesn't match the assets will not be extracted and an error will be displayed in logcat.
- 16-bit output only.
A faster, more versatile solution is to use [FFmpeg](https://www.ffmpeg.org/). To do this follow [the instructions here](https://medium.com/@donturner/using-ffmpeg-for-faster-audio-decoding-967894e94e71) and use the `ffmpegExtractor` build variant found in `app.gradle`. The extraction will then be done by `FFmpegExtractor`.

View file

@ -0,0 +1,77 @@
apply plugin: 'com.android.application'
apply plugin: 'kotlin-android'
android {
defaultConfig {
applicationId "com.google.oboe.samples.rhythmgame"
targetSdkVersion 35
compileSdkVersion 35
versionCode 1
versionName "1.0"
testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
externalNativeBuild {
cmake {
cppFlags "-std=c++17"
abiFilters 'armeabi-v7a', 'arm64-v8a', 'x86', 'x86_64'
}
}
}
buildTypes {
release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard-android.txt'), 'proguard-rules.pro'
}
}
compileOptions {
sourceCompatibility JavaVersion.VERSION_18
targetCompatibility JavaVersion.VERSION_18
}
externalNativeBuild {
cmake {
path "CMakeLists.txt"
}
}
flavorDimensions "extractorLibrary"
productFlavors {
ndkExtractor {
dimension "extractorLibrary"
// Oboe has a minimum API of 16, but AMediaExtractor (used to extract the MP3 assets)
// is only available from API 21.
// For further backward compatibility consider using FFmpeg (see below)
minSdkVersion 21
externalNativeBuild {
cmake {
arguments "-DUSE_FFMPEG=0"
}
}
}
/**
* To use FFmpeg for asset extraction do the following:
* - Uncomment this block
* - Change the build variant to ffmpegExtractor
* - Update the FFMPEG_DIR variable in CMakeLists.txt to the local FFmpeg path
*/
/*
ffmpegExtractor {
dimension "extractorLibrary"
minSdkVersion 16
externalNativeBuild {
cmake {
arguments "-DUSE_FFMPEG=1"
}
}
}
*/
}
namespace 'com.google.oboe.samples.rhythmgame'
buildFeatures {
buildConfig true
}
}
dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'androidx.appcompat:appcompat:1.7.0'
implementation 'androidx.constraintlayout:constraintlayout:2.2.1'
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 112 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

View file

@ -0,0 +1,21 @@
# Add project specific ProGuard rules here.
# You can control the set of applied configuration files using the
# proguardFiles setting in build.gradle.
#
# For more details, see
# http://developer.android.com/guide/developing/tools/proguard.html
# If your project uses WebView with JS, uncomment the following
# and specify the fully qualified class name to the JavaScript interface
# class:
#-keepclassmembers class fqcn.of.javascript.interface.for.webview {
# public *;
#}
# Uncomment this to preserve the line number information for
# debugging stack traces.
#-keepattributes SourceFile,LineNumberTable
# If you keep the line number information, uncomment this to
# hide the original source file name.
#-renamesourcefileattribute SourceFile

View file

@ -0,0 +1,22 @@
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android">
<application
android:allowBackup="true"
android:icon="@mipmap/ic_launcher"
android:label="@string/app_name"
android:roundIcon="@mipmap/ic_launcher_round"
android:supportsRtl="true"
android:theme="@style/AppTheme">
<activity android:name=".MainActivity"
android:screenOrientation="portrait"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Binary file not shown.

Binary file not shown.

View file

@ -0,0 +1,241 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <utils/logging.h>
#include <thread>
#include <cinttypes>
#include "Game.h"
Game::Game(AAssetManager &assetManager): mAssetManager(assetManager) {
}
void Game::load() {
if (!openStream()) {
mGameState = GameState::FailedToLoad;
return;
}
if (!setupAudioSources()) {
mGameState = GameState::FailedToLoad;
return;
}
scheduleSongEvents();
Result result = mAudioStream->requestStart();
if (result != Result::OK){
LOGE("Failed to start stream. Error: %s", convertToText(result));
mGameState = GameState::FailedToLoad;
return;
}
mGameState = GameState::Playing;
}
void Game::start() {
// async returns a future, we must store this future to avoid blocking. It's not sufficient
// to store this in a local variable as its destructor will block until Game::load completes.
mLoadingResult = std::async(&Game::load, this);
}
void Game::stop(){
if (mAudioStream){
mAudioStream->stop();
mAudioStream->close();
mAudioStream.reset();
}
}
void Game::tap(int64_t eventTimeAsUptime) {
if (mGameState != GameState::Playing){
LOGW("Game not in playing state, ignoring tap event");
} else {
mClap->setPlaying(true);
int64_t nextClapWindowTimeMs;
if (mClapWindows.pop(nextClapWindowTimeMs)){
// Convert the tap time to a song position
int64_t tapTimeInSongMs = mSongPositionMs + (eventTimeAsUptime - mLastUpdateTime);
TapResult result = getTapResult(tapTimeInSongMs, nextClapWindowTimeMs);
mUiEvents.push(result);
}
}
}
void Game::tick(){
switch (mGameState){
case GameState::Playing:
TapResult r;
if (mUiEvents.pop(r)) {
renderEvent(r);
} else {
SetGLScreenColor(kPlayingColor);
}
break;
case GameState::Loading:
SetGLScreenColor(kLoadingColor);
break;
case GameState::FailedToLoad:
SetGLScreenColor(kLoadingFailedColor);
break;
}
}
void Game::onSurfaceCreated() {
SetGLScreenColor(kLoadingColor);
}
void Game::onSurfaceChanged(int widthInPixels, int heightInPixels) {
}
void Game::onSurfaceDestroyed() {
}
DataCallbackResult Game::onAudioReady(AudioStream *oboeStream, void *audioData, int32_t numFrames) {
auto *outputBuffer = static_cast<float *>(audioData);
int64_t nextClapEventMs;
for (int i = 0; i < numFrames; ++i) {
mSongPositionMs = convertFramesToMillis(
mCurrentFrame,
mAudioStream->getSampleRate());
if (mClapEvents.peek(nextClapEventMs) && mSongPositionMs >= nextClapEventMs){
mClap->setPlaying(true);
mClapEvents.pop(nextClapEventMs);
}
mMixer.renderAudio(outputBuffer+(oboeStream->getChannelCount()*i), 1);
mCurrentFrame++;
}
mLastUpdateTime = nowUptimeMillis();
return DataCallbackResult::Continue;
}
void Game::onErrorAfterClose(AudioStream *audioStream, Result error) {
if (error == Result::ErrorDisconnected){
mGameState = GameState::Loading;
mAudioStream.reset();
mMixer.removeAllTracks();
mCurrentFrame = 0;
mSongPositionMs = 0;
mLastUpdateTime = 0;
start();
} else {
LOGE("Stream error: %s", convertToText(error));
}
}
/**
* Get the result of a tap
*
* @param tapTimeInMillis - The time the tap occurred in milliseconds
* @param tapWindowInMillis - The time at the middle of the "tap window" in milliseconds
* @return TapResult can be Early, Late or Success
*/
TapResult Game::getTapResult(int64_t tapTimeInMillis, int64_t tapWindowInMillis){
LOGD("Tap time %" PRId64 ", tap window time: %" PRId64, tapTimeInMillis, tapWindowInMillis);
if (tapTimeInMillis <= tapWindowInMillis + kWindowCenterOffsetMs) {
if (tapTimeInMillis >= tapWindowInMillis - kWindowCenterOffsetMs) {
return TapResult::Success;
} else {
return TapResult::Early;
}
} else {
return TapResult::Late;
}
}
bool Game::openStream() {
// Create an audio stream
AudioStreamBuilder builder;
builder.setFormat(AudioFormat::Float);
builder.setFormatConversionAllowed(true);
builder.setPerformanceMode(PerformanceMode::LowLatency);
builder.setSharingMode(SharingMode::Exclusive);
builder.setSampleRate(48000);
builder.setSampleRateConversionQuality(
SampleRateConversionQuality::Medium);
builder.setChannelCount(2);
builder.setDataCallback(this);
builder.setErrorCallback(this);
Result result = builder.openStream(mAudioStream);
if (result != Result::OK){
LOGE("Failed to open stream. Error: %s", convertToText(result));
return false;
}
mMixer.setChannelCount(mAudioStream->getChannelCount());
return true;
}
bool Game::setupAudioSources() {
// Set the properties of our audio source(s) to match that of our audio stream
AudioProperties targetProperties {
.channelCount = mAudioStream->getChannelCount(),
.sampleRate = mAudioStream->getSampleRate()
};
// Create a data source and player for the clap sound
std::shared_ptr<AAssetDataSource> mClapSource {
AAssetDataSource::newFromCompressedAsset(mAssetManager, kClapFilename, targetProperties)
};
if (mClapSource == nullptr){
LOGE("Could not load source data for clap sound");
return false;
}
mClap = std::make_unique<Player>(mClapSource);
// Create a data source and player for our backing track
std::shared_ptr<AAssetDataSource> backingTrackSource {
AAssetDataSource::newFromCompressedAsset(mAssetManager, kBackingTrackFilename, targetProperties)
};
if (backingTrackSource == nullptr){
LOGE("Could not load source data for backing track");
return false;
}
mBackingTrack = std::make_unique<Player>(backingTrackSource);
mBackingTrack->setPlaying(true);
mBackingTrack->setLooping(true);
// Add both players to a mixer
mMixer.addTrack(mClap.get());
mMixer.addTrack(mBackingTrack.get());
return true;
}
void Game::scheduleSongEvents() {
for (auto t : kClapEvents) mClapEvents.push(t);
for (auto t : kClapWindows) mClapWindows.push(t);
}

View file

@ -0,0 +1,85 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RHYTHMGAME_GAME_H
#define RHYTHMGAME_GAME_H
#include <future>
#include <android/asset_manager.h>
#include <oboe/Oboe.h>
#include "shared/Mixer.h"
#include "audio/Player.h"
#include "audio/AAssetDataSource.h"
#include "ui/OpenGLFunctions.h"
#include "utils/LockFreeQueue.h"
#include "utils/UtilityFunctions.h"
#include "GameConstants.h"
using namespace oboe;
enum class GameState {
Loading,
Playing,
FailedToLoad
};
class Game : public AudioStreamDataCallback, AudioStreamErrorCallback {
public:
explicit Game(AAssetManager&);
void start();
void stop();
void onSurfaceCreated();
void onSurfaceDestroyed();
void onSurfaceChanged(int widthInPixels, int heightInPixels);
void tick();
void tap(int64_t eventTimeAsUptime);
// Inherited from oboe::AudioStreamDataCallback.
DataCallbackResult
onAudioReady(AudioStream *oboeStream, void *audioData, int32_t numFrames) override;
// Inherited from oboe::AudioStreamErrorCallback.
void onErrorAfterClose(AudioStream *oboeStream, Result error) override;
private:
AAssetManager& mAssetManager;
std::shared_ptr<AudioStream> mAudioStream;
std::unique_ptr<Player> mClap;
std::unique_ptr<Player> mBackingTrack;
Mixer mMixer;
LockFreeQueue<int64_t, kMaxQueueItems> mClapEvents;
std::atomic<int64_t> mCurrentFrame { 0 };
std::atomic<int64_t> mSongPositionMs { 0 };
LockFreeQueue<int64_t, kMaxQueueItems> mClapWindows;
LockFreeQueue<TapResult, kMaxQueueItems> mUiEvents;
std::atomic<int64_t> mLastUpdateTime { 0 };
std::atomic<GameState> mGameState { GameState::Loading };
std::future<void> mLoadingResult;
void load();
TapResult getTapResult(int64_t tapTimeInMillis, int64_t tapWindowInMillis);
bool openStream();
bool setupAudioSources();
void scheduleSongEvents();
};
#endif //RHYTHMGAME_GAME_H

View file

@ -0,0 +1,60 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SAMPLES_GAMECONSTANTS_H
#define SAMPLES_GAMECONSTANTS_H
#include "ui/OpenGLFunctions.h"
constexpr int kBufferSizeInBursts = 2; // Use 2 bursts as the buffer size (double buffer)
constexpr int kMaxQueueItems = 4; // Must be power of 2
// Colors for game states and visual feedback for taps
constexpr ScreenColor kPlayingColor = GREY;
constexpr ScreenColor kLoadingColor = YELLOW;
constexpr ScreenColor kLoadingFailedColor = RED;
constexpr ScreenColor kTapSuccessColor = GREEN;
constexpr ScreenColor kTapEarlyColor = ORANGE;
constexpr ScreenColor kTapLateColor = PURPLE;
// This defines the size of the tap window in milliseconds. For example, if defined at 100ms the
// player will have 100ms before and after the centre of the tap window to tap on the screen and
// be successful
constexpr int kWindowCenterOffsetMs = 100;
// Filename for clap sound asset (in assets folder)
constexpr char kClapFilename[] { "CLAP.mp3" };
// Filename for the backing track asset (in assets folder)
constexpr char kBackingTrackFilename[] { "FUNKY_HOUSE.mp3" };
// The game will first demonstrate the pattern which the user should copy. It does this by
// "clapping" (playing a clap sound) at certain times during the song. We can specify these times
// here in milliseconds. Our backing track has a tempo of 120 beats per minute, which is 2 beats per
// second. This means a pattern of 3 claps starting on the first beat of the first bar would mean
// playing claps at 0ms, 500ms and 1000ms
constexpr int64_t kClapEvents[] { 0, 500, 1000 };
// We then want the user to tap on the screen exactly 4 beats after the first clap so we add clap
// windows at 2000ms, 2500ms and 3000ms (or 2, 2.5 and 3 seconds). @see getTapResult for more info.
constexpr int64_t kClapWindows[] { 2000, 2500, 3000 };
struct AudioProperties {
int32_t channelCount;
int32_t sampleRate;
};
#endif //SAMPLES_GAMECONSTANTS_H

View file

@ -0,0 +1,86 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <utils/logging.h>
#include <oboe/Oboe.h>
#include "AAssetDataSource.h"
#if !defined(USE_FFMPEG)
#error USE_FFMPEG should be defined in app.gradle
#endif
#if USE_FFMPEG==1
#include "FFMpegExtractor.h"
#else
#include "NDKExtractor.h"
#endif
constexpr int kMaxCompressionRatio { 12 };
AAssetDataSource* AAssetDataSource::newFromCompressedAsset(
AAssetManager &assetManager,
const char *filename,
const AudioProperties targetProperties) {
AAsset *asset = AAssetManager_open(&assetManager, filename, AASSET_MODE_UNKNOWN);
if (!asset) {
LOGE("Failed to open asset %s", filename);
return nullptr;
}
off_t assetSize = AAsset_getLength(asset);
LOGD("Opened %s, size %ld", filename, assetSize);
// Allocate memory to store the decompressed audio. We don't know the exact
// size of the decoded data until after decoding so we make an assumption about the
// maximum compression ratio and the decoded sample format (float for FFmpeg, int16 for NDK).
#if USE_FFMPEG==true
const long maximumDataSizeInBytes = kMaxCompressionRatio * assetSize * sizeof(float);
auto decodedData = new uint8_t[maximumDataSizeInBytes];
int64_t bytesDecoded = FFMpegExtractor::decode(asset, decodedData, targetProperties);
auto numSamples = bytesDecoded / sizeof(float);
#else
const long maximumDataSizeInBytes = kMaxCompressionRatio * assetSize * sizeof(int16_t);
auto decodedData = new uint8_t[maximumDataSizeInBytes];
int64_t bytesDecoded = NDKExtractor::decode(asset, decodedData, targetProperties);
auto numSamples = bytesDecoded / sizeof(int16_t);
#endif
// Now we know the exact number of samples we can create a float array to hold the audio data
auto outputBuffer = std::make_unique<float[]>(numSamples);
#if USE_FFMPEG==1
memcpy(outputBuffer.get(), decodedData, (size_t)bytesDecoded);
#else
// The NDK decoder can only decode to int16, we need to convert to floats
oboe::convertPcm16ToFloat(
reinterpret_cast<int16_t*>(decodedData),
outputBuffer.get(),
bytesDecoded / sizeof(int16_t));
#endif
delete[] decodedData;
AAsset_close(asset);
return new AAssetDataSource(std::move(outputBuffer),
numSamples,
targetProperties);
}

View file

@ -0,0 +1,50 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RHYTHMGAME_AASSETDATASOURCE_H
#define RHYTHMGAME_AASSETDATASOURCE_H
#include <android/asset_manager.h>
#include <GameConstants.h>
#include "DataSource.h"
class AAssetDataSource : public DataSource {
public:
int64_t getSize() const override { return mBufferSize; }
AudioProperties getProperties() const override { return mProperties; }
const float* getData() const override { return mBuffer.get(); }
static AAssetDataSource* newFromCompressedAsset(
AAssetManager &assetManager,
const char *filename,
AudioProperties targetProperties);
private:
AAssetDataSource(std::unique_ptr<float[]> data, size_t size,
const AudioProperties properties)
: mBuffer(std::move(data))
, mBufferSize(size)
, mProperties(properties) {
}
const std::unique_ptr<float[]> mBuffer;
const int64_t mBufferSize;
const AudioProperties mProperties;
};
#endif //RHYTHMGAME_AASSETDATASOURCE_H

View file

@ -0,0 +1,32 @@
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RHYTHMGAME_AUDIOSOURCE_H
#define RHYTHMGAME_AUDIOSOURCE_H
#include <cstdint>
#include <GameConstants.h>
class DataSource {
public:
virtual ~DataSource(){};
virtual int64_t getSize() const = 0;
virtual AudioProperties getProperties() const = 0;
virtual const float* getData() const = 0;
};
#endif //RHYTHMGAME_AUDIOSOURCE_H

View file

@ -0,0 +1,318 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <memory>
#include <oboe/Definitions.h>
#include "FFMpegExtractor.h"
#include "utils/logging.h"
constexpr int kInternalBufferSize = 1152; // Use MP3 block size. https://wiki.hydrogenaud.io/index.php?title=MP3
int read(void *opaque, uint8_t *buf, int buf_size) {
auto asset = (AAsset *) opaque;
int bytesRead = AAsset_read(asset, buf, (size_t)buf_size);
return bytesRead;
}
int64_t seek(void *opaque, int64_t offset, int whence){
auto asset = (AAsset*)opaque;
// See https://www.ffmpeg.org/doxygen/3.0/avio_8h.html#a427ff2a881637b47ee7d7f9e368be63f
if (whence == AVSEEK_SIZE) return AAsset_getLength(asset);
if (AAsset_seek(asset, offset, whence) == -1){
return -1;
} else {
return 0;
}
}
bool FFMpegExtractor::createAVIOContext(AAsset *asset, uint8_t *buffer, uint32_t bufferSize,
AVIOContext **avioContext) {
constexpr int isBufferWriteable = 0;
*avioContext = avio_alloc_context(
buffer, // internal buffer for FFmpeg to use
bufferSize, // For optimal decoding speed this should be the protocol block size
isBufferWriteable,
asset, // Will be passed to our callback functions as a (void *)
read, // Read callback function
nullptr, // Write callback function (not used)
seek); // Seek callback function
if (*avioContext == nullptr){
LOGE("Failed to create AVIO context");
return false;
} else {
return true;
}
}
bool
FFMpegExtractor::createAVFormatContext(AVIOContext *avioContext, AVFormatContext **avFormatContext) {
*avFormatContext = avformat_alloc_context();
(*avFormatContext)->pb = avioContext;
if (*avFormatContext == nullptr){
LOGE("Failed to create AVFormatContext");
return false;
} else {
return true;
}
}
bool FFMpegExtractor::openAVFormatContext(AVFormatContext *avFormatContext) {
int result = avformat_open_input(&avFormatContext,
"", /* URL is left empty because we're providing our own I/O */
nullptr /* AVInputFormat *fmt */,
nullptr /* AVDictionary **options */
);
if (result == 0) {
return true;
} else {
LOGE("Failed to open file. Error code %s", av_err2str(result));
return false;
}
}
bool FFMpegExtractor::getStreamInfo(AVFormatContext *avFormatContext) {
int result = avformat_find_stream_info(avFormatContext, nullptr);
if (result == 0 ){
return true;
} else {
LOGE("Failed to find stream info. Error code %s", av_err2str(result));
return false;
}
}
AVStream *FFMpegExtractor::getBestAudioStream(AVFormatContext *avFormatContext) {
int streamIndex = av_find_best_stream(avFormatContext, AVMEDIA_TYPE_AUDIO, -1, -1, nullptr, 0);
if (streamIndex < 0){
LOGE("Could not find stream");
return nullptr;
} else {
return avFormatContext->streams[streamIndex];
}
}
int64_t FFMpegExtractor::decode(
AAsset *asset,
uint8_t *targetData,
AudioProperties targetProperties) {
LOGI("Decoder: FFMpeg");
int returnValue = -1; // -1 indicates error
// Create a buffer for FFmpeg to use for decoding (freed in the custom deleter below)
auto buffer = reinterpret_cast<uint8_t*>(av_malloc(kInternalBufferSize));
// Create an AVIOContext with a custom deleter
std::unique_ptr<AVIOContext, void(*)(AVIOContext *)> ioContext {
nullptr,
[](AVIOContext *c) {
av_free(c->buffer);
avio_context_free(&c);
}
};
{
AVIOContext *tmp = nullptr;
if (!createAVIOContext(asset, buffer, kInternalBufferSize, &tmp)){
LOGE("Could not create an AVIOContext");
return returnValue;
}
ioContext.reset(tmp);
}
// Create an AVFormatContext using the avformat_free_context as the deleter function
std::unique_ptr<AVFormatContext, decltype(&avformat_free_context)> formatContext {
nullptr,
&avformat_free_context
};
{
AVFormatContext *tmp;
if (!createAVFormatContext(ioContext.get(), &tmp)) return returnValue;
formatContext.reset(tmp);
}
if (!openAVFormatContext(formatContext.get())) return returnValue;
if (!getStreamInfo(formatContext.get())) return returnValue;
// Obtain the best audio stream to decode
AVStream *stream = getBestAudioStream(formatContext.get());
if (stream == nullptr || stream->codecpar == nullptr){
LOGE("Could not find a suitable audio stream to decode");
return returnValue;
}
printCodecParameters(stream->codecpar);
// Find the codec to decode this stream
AVCodec *codec = avcodec_find_decoder(stream->codecpar->codec_id);
if (!codec){
LOGE("Could not find codec with ID: %d", stream->codecpar->codec_id);
return returnValue;
}
// Create the codec context, specifying the deleter function
std::unique_ptr<AVCodecContext, void(*)(AVCodecContext *)> codecContext {
nullptr,
[](AVCodecContext *c) { avcodec_free_context(&c); }
};
{
AVCodecContext *tmp = avcodec_alloc_context3(codec);
if (!tmp){
LOGE("Failed to allocate codec context");
return returnValue;
}
codecContext.reset(tmp);
}
// Copy the codec parameters into the context
if (avcodec_parameters_to_context(codecContext.get(), stream->codecpar) < 0){
LOGE("Failed to copy codec parameters to codec context");
return returnValue;
}
// Open the codec
if (avcodec_open2(codecContext.get(), codec, nullptr) < 0){
LOGE("Could not open codec");
return returnValue;
}
// prepare resampler
int32_t outChannelLayout = (1 << targetProperties.channelCount) - 1;
LOGD("Channel layout %d", outChannelLayout);
SwrContext *swr = swr_alloc();
av_opt_set_int(swr, "in_channel_count", stream->codecpar->channels, 0);
av_opt_set_int(swr, "out_channel_count", targetProperties.channelCount, 0);
av_opt_set_int(swr, "in_channel_layout", stream->codecpar->channel_layout, 0);
av_opt_set_int(swr, "out_channel_layout", outChannelLayout, 0);
av_opt_set_int(swr, "in_sample_rate", stream->codecpar->sample_rate, 0);
av_opt_set_int(swr, "out_sample_rate", targetProperties.sampleRate, 0);
av_opt_set_int(swr, "in_sample_fmt", stream->codecpar->format, 0);
av_opt_set_sample_fmt(swr, "out_sample_fmt", AV_SAMPLE_FMT_FLT, 0);
av_opt_set_int(swr, "force_resampling", 1, 0);
// Check that resampler has been inited
int result = swr_init(swr);
if (result != 0){
LOGE("swr_init failed. Error: %s", av_err2str(result));
return returnValue;
};
if (!swr_is_initialized(swr)) {
LOGE("swr_is_initialized is false\n");
return returnValue;
}
// Prepare to read data
int bytesWritten = 0;
AVPacket avPacket; // Stores compressed audio data
av_init_packet(&avPacket);
AVFrame *decodedFrame = av_frame_alloc(); // Stores raw audio data
int bytesPerSample = av_get_bytes_per_sample((AVSampleFormat)stream->codecpar->format);
LOGD("Bytes per sample %d", bytesPerSample);
LOGD("DECODE START");
// While there is more data to read, read it into the avPacket
while (av_read_frame(formatContext.get(), &avPacket) == 0){
if (avPacket.stream_index == stream->index && avPacket.size > 0) {
// Pass our compressed data into the codec
result = avcodec_send_packet(codecContext.get(), &avPacket);
if (result != 0) {
LOGE("avcodec_send_packet error: %s", av_err2str(result));
goto cleanup;
}
// Retrieve our raw data from the codec
result = avcodec_receive_frame(codecContext.get(), decodedFrame);
if (result == AVERROR(EAGAIN)) {
// The codec needs more data before it can decode
LOGI("avcodec_receive_frame returned EAGAIN");
av_packet_unref(&avPacket);
continue;
} else if (result != 0) {
LOGE("avcodec_receive_frame error: %s", av_err2str(result));
goto cleanup;
}
// DO RESAMPLING
auto dst_nb_samples = (int32_t) av_rescale_rnd(
swr_get_delay(swr, decodedFrame->sample_rate) + decodedFrame->nb_samples,
targetProperties.sampleRate,
decodedFrame->sample_rate,
AV_ROUND_UP);
short *buffer1;
av_samples_alloc(
(uint8_t **) &buffer1,
nullptr,
targetProperties.channelCount,
dst_nb_samples,
AV_SAMPLE_FMT_FLT,
0);
int frame_count = swr_convert(
swr,
(uint8_t **) &buffer1,
dst_nb_samples,
(const uint8_t **) decodedFrame->data,
decodedFrame->nb_samples);
int64_t bytesToWrite = frame_count * sizeof(float) * targetProperties.channelCount;
memcpy(targetData + bytesWritten, buffer1, (size_t)bytesToWrite);
bytesWritten += bytesToWrite;
av_freep(&buffer1);
av_packet_unref(&avPacket);
}
}
av_frame_free(&decodedFrame);
LOGD("DECODE END");
returnValue = bytesWritten;
cleanup:
return returnValue;
}
void FFMpegExtractor::printCodecParameters(AVCodecParameters *params) {
LOGD("Stream properties");
LOGD("Channels: %d", params->channels);
LOGD("Channel layout: %" PRId64, params->channel_layout);
LOGD("Sample rate: %d", params->sample_rate);
LOGD("Format: %s", av_get_sample_fmt_name((AVSampleFormat)params->format));
LOGD("Frame size: %d", params->frame_size);
}

View file

@ -0,0 +1,55 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FFMPEG_FFMPEGEXTRACTOR_H
#define FFMPEG_FFMPEGEXTRACTOR_H
extern "C" {
#include <libavformat/avformat.h>
#include <libswresample/swresample.h>
#include <libavutil/opt.h>
}
#include <cstdint>
#include <android/asset_manager.h>
#include <GameConstants.h>
class FFMpegExtractor {
public:
static int64_t decode(AAsset *asset, uint8_t *targetData, AudioProperties targetProperties);
private:
static bool createAVIOContext(AAsset *asset, uint8_t *buffer, uint32_t bufferSize,
AVIOContext **avioContext);
static bool createAVFormatContext(AVIOContext *avioContext, AVFormatContext **avFormatContext);
static bool openAVFormatContext(AVFormatContext *avFormatContext);
static int32_t cleanup(AVIOContext *avioContext, AVFormatContext *avFormatContext);
static bool getStreamInfo(AVFormatContext *avFormatContext);
static AVStream *getBestAudioStream(AVFormatContext *avFormatContext);
static AVCodec *findCodec(AVCodecID id);
static void printCodecParameters(AVCodecParameters *params);
};
#endif //FFMPEG_FFMPEGEXTRACTOR_H

View file

@ -0,0 +1,199 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/types.h>
#include <cstring>
#include <media/NdkMediaExtractor.h>
#include <utils/logging.h>
#include <cinttypes>
#include "NDKExtractor.h"
int32_t NDKExtractor::decode(AAsset *asset, uint8_t *targetData, AudioProperties targetProperties) {
LOGD("Using NDK decoder");
// open asset as file descriptor
off_t start, length;
int fd = AAsset_openFileDescriptor(asset, &start, &length);
// Extract the audio frames
AMediaExtractor *extractor = AMediaExtractor_new();
media_status_t amresult = AMediaExtractor_setDataSourceFd(extractor, fd,
static_cast<off64_t>(start),
static_cast<off64_t>(length));
if (amresult != AMEDIA_OK){
LOGE("Error setting extractor data source, err %d", amresult);
return 0;
}
// Specify our desired output format by creating it from our source
AMediaFormat *format = AMediaExtractor_getTrackFormat(extractor, 0);
int32_t sampleRate;
if (AMediaFormat_getInt32(format, AMEDIAFORMAT_KEY_SAMPLE_RATE, &sampleRate)){
LOGD("Source sample rate %d", sampleRate);
if (sampleRate != targetProperties.sampleRate){
LOGE("Input (%d) and output (%d) sample rates do not match. "
"NDK decoder does not support resampling.",
sampleRate,
targetProperties.sampleRate);
return 0;
}
} else {
LOGE("Failed to get sample rate");
return 0;
};
int32_t channelCount;
if (AMediaFormat_getInt32(format, AMEDIAFORMAT_KEY_CHANNEL_COUNT, &channelCount)){
LOGD("Got channel count %d", channelCount);
if (channelCount != targetProperties.channelCount){
LOGE("NDK decoder does not support different "
"input (%d) and output (%d) channel counts",
channelCount,
targetProperties.channelCount);
}
} else {
LOGE("Failed to get channel count");
return 0;
}
const char *formatStr = AMediaFormat_toString(format);
LOGD("Output format %s", formatStr);
const char *mimeType;
if (AMediaFormat_getString(format, AMEDIAFORMAT_KEY_MIME, &mimeType)) {
LOGD("Got mime type %s", mimeType);
} else {
LOGE("Failed to get mime type");
return 0;
}
// Obtain the correct decoder
AMediaCodec *codec = nullptr;
AMediaExtractor_selectTrack(extractor, 0);
codec = AMediaCodec_createDecoderByType(mimeType);
AMediaCodec_configure(codec, format, nullptr, nullptr, 0);
AMediaCodec_start(codec);
// DECODE
bool isExtracting = true;
bool isDecoding = true;
int32_t bytesWritten = 0;
while(isExtracting || isDecoding){
if (isExtracting){
// Obtain the index of the next available input buffer
ssize_t inputIndex = AMediaCodec_dequeueInputBuffer(codec, 2000);
//LOGV("Got input buffer %d", inputIndex);
// The input index acts as a status if its negative
if (inputIndex < 0){
if (inputIndex == AMEDIACODEC_INFO_TRY_AGAIN_LATER){
// LOGV("Codec.dequeueInputBuffer try again later");
} else {
LOGE("Codec.dequeueInputBuffer unknown error status");
}
} else {
// Obtain the actual buffer and read the encoded data into it
size_t inputSize;
uint8_t *inputBuffer = AMediaCodec_getInputBuffer(codec, inputIndex, &inputSize);
//LOGV("Sample size is: %d", inputSize);
ssize_t sampleSize = AMediaExtractor_readSampleData(extractor, inputBuffer, inputSize);
auto presentationTimeUs = AMediaExtractor_getSampleTime(extractor);
if (sampleSize > 0){
// Enqueue the encoded data
AMediaCodec_queueInputBuffer(codec, inputIndex, 0, sampleSize,
presentationTimeUs,
0);
AMediaExtractor_advance(extractor);
} else {
LOGD("End of extractor data stream");
isExtracting = false;
// We need to tell the codec that we've reached the end of the stream
AMediaCodec_queueInputBuffer(codec, inputIndex, 0, 0,
presentationTimeUs,
AMEDIACODEC_BUFFER_FLAG_END_OF_STREAM);
}
}
}
if (isDecoding){
// Dequeue the decoded data
AMediaCodecBufferInfo info;
ssize_t outputIndex = AMediaCodec_dequeueOutputBuffer(codec, &info, 0);
if (outputIndex >= 0){
// Check whether this is set earlier
if (info.flags & AMEDIACODEC_BUFFER_FLAG_END_OF_STREAM){
LOGD("Reached end of decoding stream");
isDecoding = false;
}
// Valid index, acquire buffer
size_t outputSize;
uint8_t *outputBuffer = AMediaCodec_getOutputBuffer(codec, outputIndex, &outputSize);
/*LOGV("Got output buffer index %d, buffer size: %d, info size: %d writing to pcm index %d",
outputIndex,
outputSize,
info.size,
m_writeIndex);*/
// copy the data out of the buffer
memcpy(targetData + bytesWritten, outputBuffer, info.size);
bytesWritten+=info.size;
AMediaCodec_releaseOutputBuffer(codec, outputIndex, false);
} else {
// The outputIndex doubles as a status return if its value is < 0
switch(outputIndex){
case AMEDIACODEC_INFO_TRY_AGAIN_LATER:
LOGD("dequeueOutputBuffer: try again later");
break;
case AMEDIACODEC_INFO_OUTPUT_BUFFERS_CHANGED:
LOGD("dequeueOutputBuffer: output buffers changed");
break;
case AMEDIACODEC_INFO_OUTPUT_FORMAT_CHANGED:
LOGD("dequeueOutputBuffer: output outputFormat changed");
format = AMediaCodec_getOutputFormat(codec);
LOGD("outputFormat changed to: %s", AMediaFormat_toString(format));
break;
}
}
}
}
// Clean up
AMediaFormat_delete(format);
AMediaCodec_delete(codec);
AMediaExtractor_delete(extractor);
return bytesWritten;
}

View file

@ -0,0 +1,33 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef FFMPEG_NDKMEDIAEXTRACTOR_H
#define FFMPEG_NDKMEDIAEXTRACTOR_H
#include <cstdint>
#include <android/asset_manager.h>
#include <GameConstants.h>
class NDKExtractor {
public:
static int32_t decode(AAsset *asset, uint8_t *targetData, AudioProperties targetProperties);
};
#endif //FFMPEG_NDKMEDIAEXTRACTOR_H

View file

@ -0,0 +1,59 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Player.h"
#include "utils/logging.h"
void Player::renderAudio(float *targetData, int32_t numFrames){
const AudioProperties properties = mSource->getProperties();
if (mIsPlaying){
int64_t framesToRenderFromData = numFrames;
int64_t totalSourceFrames = mSource->getSize() / properties.channelCount;
const float *data = mSource->getData();
// Check whether we're about to reach the end of the recording
if (!mIsLooping && mReadFrameIndex + numFrames >= totalSourceFrames){
framesToRenderFromData = totalSourceFrames - mReadFrameIndex;
mIsPlaying = false;
}
for (int i = 0; i < framesToRenderFromData; ++i) {
for (int j = 0; j < properties.channelCount; ++j) {
targetData[(i*properties.channelCount)+j] = data[(mReadFrameIndex*properties.channelCount)+j];
}
// Increment and handle wraparound
if (++mReadFrameIndex >= totalSourceFrames) mReadFrameIndex = 0;
}
if (framesToRenderFromData < numFrames){
// fill the rest of the buffer with silence
renderSilence(&targetData[framesToRenderFromData], numFrames * properties.channelCount);
}
} else {
renderSilence(targetData, numFrames * properties.channelCount);
}
}
void Player::renderSilence(float *start, int32_t numSamples){
for (int i = 0; i < numSamples; ++i) {
start[i] = 0;
}
}

View file

@ -0,0 +1,60 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RHYTHMGAME_SOUNDRECORDING_H
#define RHYTHMGAME_SOUNDRECORDING_H
#include <cstdint>
#include <array>
#include <chrono>
#include <memory>
#include <atomic>
#include <android/asset_manager.h>
#include "shared/IRenderableAudio.h"
#include "DataSource.h"
class Player : public IRenderableAudio{
public:
/**
* Construct a new Player from the given DataSource. Players can share the same data source.
* For example, you could play two identical sounds concurrently by creating 2 Players with the
* same data source.
*
* @param source
*/
Player(std::shared_ptr<DataSource> source)
: mSource(source)
{};
void renderAudio(float *targetData, int32_t numFrames);
void resetPlayHead() { mReadFrameIndex = 0; };
void setPlaying(bool isPlaying) { mIsPlaying = isPlaying; resetPlayHead(); };
void setLooping(bool isLooping) { mIsLooping = isLooping; };
private:
int32_t mReadFrameIndex = 0;
std::atomic<bool> mIsPlaying { false };
std::atomic<bool> mIsLooping { false };
std::shared_ptr<DataSource> mSource;
void renderSilence(float*, int32_t);
};
#endif //RHYTHMGAME_SOUNDRECORDING_H

View file

@ -0,0 +1,93 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <jni.h>
#include <memory>
#include <android/asset_manager_jni.h>
#include "utils/logging.h"
#include "Game.h"
extern "C" {
std::unique_ptr<Game> game;
JNIEXPORT void JNICALL
Java_com_google_oboe_samples_rhythmgame_MainActivity_native_1onStart(JNIEnv *env, jobject instance,
jobject jAssetManager) {
AAssetManager *assetManager = AAssetManager_fromJava(env, jAssetManager);
if (assetManager == nullptr) {
LOGE("Could not obtain the AAssetManager");
return;
}
game = std::make_unique<Game>(*assetManager);
game->start();
}
JNIEXPORT void JNICALL
Java_com_google_oboe_samples_rhythmgame_RendererWrapper_native_1onSurfaceCreated(JNIEnv *env,
jobject instance) {
game->onSurfaceCreated();
}
JNIEXPORT void JNICALL
Java_com_google_oboe_samples_rhythmgame_RendererWrapper_native_1onSurfaceChanged(JNIEnv *env,
jclass type,
jint width,
jint height) {
game->onSurfaceChanged(width, height);
}
JNIEXPORT void JNICALL
Java_com_google_oboe_samples_rhythmgame_RendererWrapper_native_1onDrawFrame(JNIEnv *env,
jclass type) {
game->tick();
}
JNIEXPORT void JNICALL
Java_com_google_oboe_samples_rhythmgame_GameSurfaceView_native_1onTouchInput(JNIEnv *env,
jclass type,
jint event_type,
jlong time_since_boot_ms,
jint pixel_x,
jint pixel_y) {
game->tap(time_since_boot_ms);
}
JNIEXPORT void JNICALL
Java_com_google_oboe_samples_rhythmgame_GameSurfaceView_native_1surfaceDestroyed__(JNIEnv *env,
jclass type) {
game->onSurfaceDestroyed();
}
JNIEXPORT void JNICALL
Java_com_google_oboe_samples_rhythmgame_MainActivity_native_1onStop(JNIEnv *env, jobject instance) {
game->stop();
}
JNIEXPORT void JNICALL
Java_com_google_oboe_samples_rhythmgame_MainActivity_native_1setDefaultStreamValues(JNIEnv *env,
jclass type,
jint sampleRate,
jint framesPerBurst) {
oboe::DefaultStreamValues::SampleRate = (int32_t) sampleRate;
oboe::DefaultStreamValues::FramesPerBurst = (int32_t) framesPerBurst;
}
} // extern "C"

View file

@ -0,0 +1,33 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "OpenGLFunctions.h"
#include "utils/logging.h"
void CheckOpenGLError(const char* stmt, const char* fname, int line)
{
GLenum err = glGetError();
if (err != GL_NO_ERROR)
{
LOGW("OpenGL error %08x, at %s:%i - for %s\n", err, fname, line, stmt);
assert(false);
}
}
void SetGLScreenColor(ScreenColor color){
glClearColor(color.red, color.green, color.blue, color.alpha);
glClear(GL_COLOR_BUFFER_BIT);
}

View file

@ -0,0 +1,58 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_OGL_H
#define ANDROID_OGL_H
#include <assert.h>
struct ScreenColor {
float red;
float green;
float blue;
float alpha;
};
constexpr ScreenColor RED { 1.0f, 0.0f, 0.0f, 1.0f };
constexpr ScreenColor GREEN { 0.0f, 1.0f, 0.0f, 1.0f };
constexpr ScreenColor BLUE { 0.0f, 0.0f, 1.0f, 1.0f };
constexpr ScreenColor PURPLE { 1.0f, 0.0f, 1.0f, 1.0f };
constexpr ScreenColor ORANGE { 1.0f, 0.5f, 0.0f, 1.0f };
constexpr ScreenColor GREY { 0.3f, 0.3f, 0.3f, 0.3f };
constexpr ScreenColor YELLOW { 1.0f, 1.0f, 0.0f, 1.0f };
#ifdef GL3
#include <GLES3/gl3.h>
#elif GL3_2
#include <GLES3/gl32.h>
#else
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#endif
void CheckOpenGLError(const char* stmt, const char* fname, int line);
#ifndef NDEBUG
#define GL_CHECK(stmt) \
stmt;\
CheckOpenGLError(#stmt, __FILE__, __LINE__);
#else
#define GL_CHECK(stmt) stmt
#endif
void SetGLScreenColor(ScreenColor color);
#endif //ANDROID_OGL_H

View file

@ -0,0 +1,154 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RHYTHMGAME_LOCKFREEQUEUE_H
#define RHYTHMGAME_LOCKFREEQUEUE_H
#include <cstdint>
#include <atomic>
/**
* A lock-free queue for single consumer, single producer. Not thread-safe when using multiple
* consumers or producers.
*
* Example code:
*
* LockFreeQueue<int, 1024> myQueue;
* int value = 123;
* myQueue.push(value);
* myQueue.pop(value);
*
* @tparam T - The item type
* @tparam CAPACITY - Maximum number of items which can be held in the queue. Must be a power of 2.
* Must be less than the maximum value permissible in INDEX_TYPE
* @tparam INDEX_TYPE - The internal index type, defaults to uint32_t. Changing this will affect
* the maximum capacity. Included for ease of unit testing because testing queue lengths of
* UINT32_MAX can be time consuming and is not always possible.
*/
template <typename T, uint32_t CAPACITY, typename INDEX_TYPE = uint32_t>
class LockFreeQueue {
public:
/**
* Implementation details:
*
* We have 2 counters: readCounter and writeCounter. Each will increment until it reaches
* INDEX_TYPE_MAX, then wrap to zero. Unsigned integer overflow is defined behaviour in C++.
*
* Each time we need to access our data array we call mask() which gives us the index into the
* array. This approach avoids having a "dead item" in the buffer to distinguish between full
* and empty states. It also allows us to have a size() method which is easily calculated.
*
* IMPORTANT: This implementation is only thread-safe with a single reader thread and a single
* writer thread. Have more than one of either will result in Bad Things.
*/
static constexpr bool isPowerOfTwo(uint32_t n) { return (n & (n - 1)) == 0; }
static_assert(isPowerOfTwo(CAPACITY), "Capacity must be a power of 2");
static_assert(std::is_unsigned<INDEX_TYPE>::value, "Index type must be unsigned");
/**
* Pop a value off the head of the queue
*
* @param val - element will be stored in this variable
* @return true if value was popped successfully, false if the queue is empty
*/
bool pop(T &val) {
if (isEmpty()){
return false;
} else {
val = buffer[mask(readCounter)];
++readCounter;
return true;
}
}
/**
* Add an item to the back of the queue
*
* @param item - The item to add
* @return true if item was added, false if the queue was full
*/
bool push(const T& item) {
if (isFull()){
return false;
} else {
buffer[mask(writeCounter)] = item;
++writeCounter;
return true;
}
}
/**
* Get the item at the front of the queue but do not remove it
*
* @param item - item will be stored in this variable
* @return true if item was stored, false if the queue was empty
*/
bool peek(T &item) const {
if (isEmpty()){
return false;
} else {
item = buffer[mask(readCounter)];
return true;
}
}
/**
* Get the number of items in the queue
*
* @return number of items in the queue
*/
INDEX_TYPE size() const {
/**
* This is worth some explanation:
*
* Whilst writeCounter is greater than readCounter the result of (write - read) will always
* be positive. Simple.
*
* But when writeCounter is equal to INDEX_TYPE_MAX (e.g. UINT32_MAX) the next push will
* wrap it around to zero, the start of the buffer, making writeCounter less than
* readCounter so the result of (write - read) will be negative.
*
* But because we're returning an unsigned type return value will be as follows:
*
* returnValue = INDEX_TYPE_MAX - (write - read)
*
* e.g. if write is 0, read is 150 and the INDEX_TYPE is uint8_t where the max value is
* 255 the return value will be (255 - (0 - 150)) = 105.
*
*/
return writeCounter - readCounter;
};
private:
bool isEmpty() const { return readCounter == writeCounter; }
bool isFull() const { return size() == CAPACITY; }
INDEX_TYPE mask(INDEX_TYPE n) const { return static_cast<INDEX_TYPE>(n & (CAPACITY - 1)); }
T buffer[CAPACITY];
std::atomic<INDEX_TYPE> writeCounter { 0 };
std::atomic<INDEX_TYPE> readCounter { 0 };
};
#endif //RHYTHMGAME_LOCKFREEQUEUE_H

View file

@ -0,0 +1,40 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <chrono>
#include <ui/OpenGLFunctions.h>
#include <GameConstants.h>
#include "UtilityFunctions.h"
#include "logging.h"
int64_t nowUptimeMillis() {
using namespace std::chrono;
return duration_cast<milliseconds>(steady_clock::now().time_since_epoch()).count();
}
void renderEvent(TapResult r){
switch (r) {
case TapResult::Success:
SetGLScreenColor(kTapSuccessColor);
break;
case TapResult::Early:
SetGLScreenColor(kTapEarlyColor);
break;
case TapResult::Late:
SetGLScreenColor(kTapLateColor);
break;
}
}

View file

@ -0,0 +1,42 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef RHYTHMGAME_UTILITYFUNCTIONS_H
#define RHYTHMGAME_UTILITYFUNCTIONS_H
#include <stdint.h>
constexpr int64_t kMillisecondsInSecond = 1000;
constexpr int64_t kNanosecondsInMillisecond = 1000000;
enum class TapResult {
Early,
Late,
Success
};
int64_t nowUptimeMillis();
constexpr int64_t convertFramesToMillis(const int64_t frames, const int sampleRate){
return static_cast<int64_t>((static_cast<double>(frames)/ sampleRate) * kMillisecondsInSecond);
}
TapResult getTapResult(int64_t tapTimeInMillis, int64_t tapWindowInMillis);
void renderEvent(TapResult r);
#endif //RHYTHMGAME_UTILITYFUNCTIONS_H

View file

@ -0,0 +1,32 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_LOGGING_H
#define ANDROID_LOGGING_H
#include <stdio.h>
#include <android/log.h>
#include <vector>
#define APP_NAME "RhythmGame"
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, APP_NAME, __VA_ARGS__))
#define LOGI(...) ((void)__android_log_print(ANDROID_LOG_INFO, APP_NAME, __VA_ARGS__))
#define LOGW(...) ((void)__android_log_print(ANDROID_LOG_WARN, APP_NAME, __VA_ARGS__))
#define LOGE(...) ((void)__android_log_print(ANDROID_LOG_ERROR, APP_NAME, __VA_ARGS__))
#endif //ANDROID_LOGGING_H

View file

@ -0,0 +1,64 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.oboe.samples.rhythmgame;
import android.content.Context;
import android.opengl.GLSurfaceView;
import android.util.AttributeSet;
import android.view.MotionEvent;
import android.view.SurfaceHolder;
public class GameSurfaceView extends GLSurfaceView {
public static native void native_onTouchInput(int eventType, long timeSinceBootMs, int pixel_x, int pixel_y);
public static native void native_surfaceDestroyed();
private final RendererWrapper mRenderer;
public GameSurfaceView(Context context) {
super(context);
setEGLContextClientVersion(2);
mRenderer = new RendererWrapper();
// Set the Renderer for drawing on the GLSurfaceView
setRenderer(mRenderer);
}
public GameSurfaceView(Context context, AttributeSet attrs) {
super(context, attrs);
setEGLContextClientVersion(2);
mRenderer = new RendererWrapper();
// Set the Renderer for drawing on the GLSurfaceView
setRenderer(mRenderer);
}
@Override
public void surfaceDestroyed(SurfaceHolder holder) {
native_surfaceDestroyed();
super.surfaceDestroyed(holder);
}
@Override
public boolean onTouchEvent(MotionEvent e) {
// MotionEvent reports input details from the touch screen
// and other input controls. In our case we care about DOWN events.
switch (e.getAction()) {
case MotionEvent.ACTION_DOWN:
native_onTouchInput(0, e.getEventTime(), (int)e.getX(), (int)e.getY());
break;
}
return true;
}
}

View file

@ -0,0 +1,75 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.oboe.samples.rhythmgame;
import android.content.Context;
import android.content.res.AssetManager;
import androidx.appcompat.app.AppCompatActivity;
import android.media.AudioManager;
import android.os.Build;
import android.os.Bundle;
import android.view.WindowManager;
public class MainActivity extends AppCompatActivity {
// Used to load the 'native-lib' library on application startup.
static {
if (BuildConfig.FLAVOR == "ffmpegExtractor"){
System.loadLibrary("avutil");
System.loadLibrary("swresample");
System.loadLibrary("avcodec");
System.loadLibrary("avformat");
}
System.loadLibrary("native-lib");
}
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
setDefaultStreamValues(this);
}
protected void onResume(){
super.onResume();
native_onStart(getAssets());
}
protected void onPause(){
native_onStop();
super.onPause();
}
static void setDefaultStreamValues(Context context) {
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.JELLY_BEAN_MR1){
AudioManager myAudioMgr = (AudioManager) context.getSystemService(Context.AUDIO_SERVICE);
String sampleRateStr = myAudioMgr.getProperty(AudioManager.PROPERTY_OUTPUT_SAMPLE_RATE);
int defaultSampleRate = Integer.parseInt(sampleRateStr);
String framesPerBurstStr = myAudioMgr.getProperty(AudioManager.PROPERTY_OUTPUT_FRAMES_PER_BUFFER);
int defaultFramesPerBurst = Integer.parseInt(framesPerBurstStr);
native_setDefaultStreamValues(defaultSampleRate, defaultFramesPerBurst);
}
}
private native void native_onStart(AssetManager assetManager);
private native void native_onStop();
private static native void native_setDefaultStreamValues(int defaultSampleRate,
int defaultFramesPerBurst);
}

View file

@ -0,0 +1,41 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.oboe.samples.rhythmgame;
import android.opengl.GLSurfaceView;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
public class RendererWrapper implements GLSurfaceView.Renderer {
public static native void native_onSurfaceCreated();
public static native void native_onSurfaceChanged(int widthInPixels, int heightInPixels);
public static native void native_onDrawFrame();
@Override
public void onSurfaceCreated(GL10 gl10, EGLConfig eglConfig) {
native_onSurfaceCreated();
}
@Override
public void onSurfaceChanged(GL10 gl10, int width, int height) {
native_onSurfaceChanged(width, height);
}
@Override
public void onDrawFrame(GL10 gl10) {
native_onDrawFrame();
}
}

View file

@ -0,0 +1,34 @@
<vector xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:aapt="http://schemas.android.com/aapt"
android:width="108dp"
android:height="108dp"
android:viewportHeight="108"
android:viewportWidth="108">
<path
android:fillType="evenOdd"
android:pathData="M32,64C32,64 38.39,52.99 44.13,50.95C51.37,48.37 70.14,49.57 70.14,49.57L108.26,87.69L108,109.01L75.97,107.97L32,64Z"
android:strokeColor="#00000000"
android:strokeWidth="1">
<aapt:attr name="android:fillColor">
<gradient
android:endX="78.5885"
android:endY="90.9159"
android:startX="48.7653"
android:startY="61.0927"
android:type="linear">
<item
android:color="#44000000"
android:offset="0.0" />
<item
android:color="#00000000"
android:offset="1.0" />
</gradient>
</aapt:attr>
</path>
<path
android:fillColor="#FFFFFF"
android:fillType="nonZero"
android:pathData="M66.94,46.02L66.94,46.02C72.44,50.07 76,56.61 76,64L32,64C32,56.61 35.56,50.11 40.98,46.06L36.18,41.19C35.45,40.45 35.45,39.3 36.18,38.56C36.91,37.81 38.05,37.81 38.78,38.56L44.25,44.05C47.18,42.57 50.48,41.71 54,41.71C57.48,41.71 60.78,42.57 63.68,44.05L69.11,38.56C69.84,37.81 70.98,37.81 71.71,38.56C72.44,39.3 72.44,40.45 71.71,41.19L66.94,46.02ZM62.94,56.92C64.08,56.92 65,56.01 65,54.88C65,53.76 64.08,52.85 62.94,52.85C61.8,52.85 60.88,53.76 60.88,54.88C60.88,56.01 61.8,56.92 62.94,56.92ZM45.06,56.92C46.2,56.92 47.13,56.01 47.13,54.88C47.13,53.76 46.2,52.85 45.06,52.85C43.92,52.85 43,53.76 43,54.88C43,56.01 43.92,56.92 45.06,56.92Z"
android:strokeColor="#00000000"
android:strokeWidth="1" />
</vector>

View file

@ -0,0 +1,170 @@
<?xml version="1.0" encoding="utf-8"?>
<vector xmlns:android="http://schemas.android.com/apk/res/android"
android:width="108dp"
android:height="108dp"
android:viewportHeight="108"
android:viewportWidth="108">
<path
android:fillColor="#26A69A"
android:pathData="M0,0h108v108h-108z" />
<path
android:fillColor="#00000000"
android:pathData="M9,0L9,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M19,0L19,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M29,0L29,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M39,0L39,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M49,0L49,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M59,0L59,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M69,0L69,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M79,0L79,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M89,0L89,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M99,0L99,108"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,9L108,9"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,19L108,19"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,29L108,29"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,39L108,39"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,49L108,49"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,59L108,59"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,69L108,69"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,79L108,79"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,89L108,89"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M0,99L108,99"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M19,29L89,29"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M19,39L89,39"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M19,49L89,49"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M19,59L89,59"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M19,69L89,69"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M19,79L89,79"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M29,19L29,89"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M39,19L39,89"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M49,19L49,89"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M59,19L59,89"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M69,19L69,89"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
<path
android:fillColor="#00000000"
android:pathData="M79,19L79,89"
android:strokeColor="#33FFFFFF"
android:strokeWidth="0.8" />
</vector>

View file

@ -0,0 +1,40 @@
<?xml version="1.0" encoding="utf-8"?>
<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context="com.google.oboe.samples.rhythmgame.MainActivity">
<com.google.oboe.samples.rhythmgame.GameSurfaceView
android:id="@+id/glSurfaceView"
android:layout_width="match_parent"
android:layout_centerHorizontal="true"
android:layout_centerVertical="true"
android:layout_marginBottom="0dp"
android:layout_marginEnd="0dp"
android:layout_marginStart="0dp"
android:layout_marginTop="0dp"
app:layout_constraintBottom_toBottomOf="parent"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent"
android:layout_height="match_parent" />
<TextView
android:id="@+id/instructionsBlock"
android:layout_width="294dp"
android:layout_height="159dp"
android:layout_marginStart="16dp"
android:layout_marginTop="16dp"
android:clickable="false"
android:ems="10"
android:focusable="false"
android:gravity="start|top"
android:inputType="textMultiLine"
android:text="See https://github.com/google/oboe/blob/main/samples/RhythmGame/README.md for instructions. There is a link to a codelab to follow along with."
android:textColor="#FFFFFF"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />
</androidx.constraintlayout.widget.ConstraintLayout>

View file

@ -0,0 +1,5 @@
<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
<background android:drawable="@drawable/ic_launcher_background" />
<foreground android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>

View file

@ -0,0 +1,5 @@
<?xml version="1.0" encoding="utf-8"?>
<adaptive-icon xmlns:android="http://schemas.android.com/apk/res/android">
<background android:drawable="@drawable/ic_launcher_background" />
<foreground android:drawable="@drawable/ic_launcher_foreground" />
</adaptive-icon>

Binary file not shown.

After

Width:  |  Height:  |  Size: 3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View file

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="utf-8"?>
<resources>
<color name="colorPrimary">#3F51B5</color>
<color name="colorPrimaryDark">#303F9F</color>
<color name="colorAccent">#FF4081</color>
</resources>

View file

@ -0,0 +1,3 @@
<resources>
<string name="app_name">RhythmGame</string>
</resources>

View file

@ -0,0 +1,11 @@
<resources>
<!-- Base application theme. -->
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<!-- Customize your theme here. -->
<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>
</style>
</resources>

View file

@ -0,0 +1,12 @@
cmake_minimum_required(VERSION 3.4.1)
set(GOOGLETEST_ROOT ${ANDROID_NDK}/sources/third_party/googletest/googletest)
add_library(gtest STATIC ${GOOGLETEST_ROOT}/src/gtest_main.cc ${GOOGLETEST_ROOT}/src/gtest-all.cc)
target_include_directories(gtest PRIVATE ${GOOGLETEST_ROOT})
target_include_directories(gtest PUBLIC ${GOOGLETEST_ROOT}/include)
include_directories(../src/main/cpp/)
# Build our test binary
add_executable (testRhythmGame testLockFreeQueue.cpp)
target_link_libraries(testRhythmGame gtest)

View file

@ -0,0 +1,110 @@
# Copyright 2018 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################
# Script to build and run the Oboe tests on an attached Android device or emulator
#
# Prerequisites:
# - CMake on PATH
# - ANDROID_NDK environment variable is set to your Android NDK location
# e.g. /Library/Android/sdk/ndk-bundle
# - Android device or emulator attached and accessible via adb
#
# Instructions:
# Run this script from within the oboe/tests directory. A directory 'build' will be
# created containing the test binary. This binary will then be copied to the device/emulator
# and executed.
#
# The initial run may take some time as GTest is built, subsequent runs should be much, much
# faster.
#
# If you want to perform a clean build just delete the 'build' folder and re-run this script
#
################################################
#!/bin/bash
# Directories, paths and filenames
BUILD_DIR=build
CMAKE=cmake
TEST_BINARY_FILENAME=testRhythmGame
REMOTE_DIR=/data/local/tmp/RhythmGame
# Check prerequisites
if [ -z "$ANDROID_NDK" ]; then
echo "Please set ANDROID_NDK to the Android NDK folder"
exit 1
fi
if [ ! $(type -P ${CMAKE}) ]; then
echo "${CMAKE} was not found on your path. You can install it using Android Studio using Tools->Android->SDK Manager->SDK Tools."
exit 1
fi
# Get the device ABI
ABI=$(adb shell getprop ro.product.cpu.abi | tr -d '\n\r')
if [ -z "$ABI" ]; then
echo "No device ABI was set. Please ensure a device or emulator is running"
exit 1
fi
echo "Device/emulator architecture is $ABI"
if [ ${ABI} == "arm64-v8a" ] || [ ${ABI} == "x86_64" ]; then
PLATFORM=android-21
elif [ ${ABI} == "armeabi-v7a" ] || [ ${ABI} == "x86" ]; then
PLATFORM=android-16
else
echo "Unrecognised ABI: ${ABI}. Supported ABIs are: arm64-v8a, armeabi-v7a, x86_64, x86. If you feel ${ABI} should be supported please file an issue on github.com/google/oboe"
exit 1
fi
# Configure the build
echo "Building tests for ${ABI} using ${PLATFORM}"
CMAKE_ARGS="-S. \
-B${BUILD_DIR} \
-DANDROID_ABI=${ABI} \
-DANDROID_PLATFORM=${PLATFORM} \
-DCMAKE_BUILD_TYPE=RelWithDebInfo \
-DCMAKE_CXX_FLAGS=-std=c++17 \
-DCMAKE_TOOLCHAIN_FILE=${ANDROID_NDK}/build/cmake/android.toolchain.cmake \
-DCMAKE_VERBOSE_MAKEFILE=1"
mkdir -p ${BUILD_DIR}
cmake ${CMAKE_ARGS}
# Perform the build
pushd ${BUILD_DIR}
make -j5
if [ $? -eq 0 ]; then
echo "Tests built successfully"
else
echo "Building tests FAILED"
exit 1
fi
popd
# Push the test binary to the device and run it
echo "Pushing test binary to device/emulator"
adb shell mkdir -p ${REMOTE_DIR}
adb push ${BUILD_DIR}/${TEST_BINARY_FILENAME} ${REMOTE_DIR}
echo "Running test binary"
adb shell ${REMOTE_DIR}/${TEST_BINARY_FILENAME}

View file

@ -0,0 +1,210 @@
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <thread>
#include <iostream>
#include <gtest/gtest.h>
#include "utils/LockFreeQueue.h"
/**
* Tests
* =====
*
* READ/POP:
* - if queue is empty return false
* - if queue has elements return true
* - returns correct value once
* - returns correct value more than once
*
* WRITE/PUSH:
* - if queue is full return false
* - if queue has space return true
*
* WRAP:
* - read from full queue, then write one more element, then correct read
*
* PEEK:
* - peek once
* - peek twice
*
* SIZE:
* - correct zero
* - correct once
* - correct many
*
* MULTI-THREADED:
* - write and read concurrently, queue is empty at end and item order is maintained
*
* CANNOT TEST:
* - read/writes correct after wraparound (takes too long to run)
* - Constructing queue with non power of 2 capacity results in assert failure (needs death test)
* - Constructing queue with signed type results in assert failure (needs death test)
*
*/
constexpr int kQueueCapacity = 2;
class TestLockFreeQueue : public ::testing::Test {
public:
int result1;
int result2;
int result3;
LockFreeQueue<int, kQueueCapacity> q;
};
TEST_F(TestLockFreeQueue, PopReturnsFalseWhenEmpty){
bool result = q.pop(result1);
ASSERT_EQ(result, false);
}
TEST_F(TestLockFreeQueue, PopReturnsTrueWhenNotEmpty){
q.push(123);
bool result = q.pop(result1);
ASSERT_EQ(result, true);
}
TEST_F(TestLockFreeQueue, PopReturnsOneCorrectValue){
q.push(123);
q.pop(result1);
ASSERT_EQ(result1, 123);
}
TEST_F(TestLockFreeQueue, PopReturnsManyCorrectValues){
q.push(123);
q.push(456);
q.pop(result1);
q.pop(result2);
ASSERT_EQ(result1, 123);
ASSERT_EQ(result2, 456);
}
TEST_F(TestLockFreeQueue, PushWhenFullReturnsFalse){
q.push(123);
q.push(123);
ASSERT_EQ(q.push(123), false);
}
TEST_F(TestLockFreeQueue, PushWhenSpaceAvailableReturnsTrue){
ASSERT_EQ(q.push(123), true);
}
TEST_F(TestLockFreeQueue, PushHandlesWrapCorrectly){
q.push(123);
q.push(234);
q.pop(result1);
q.push(999);
q.pop(result2);
ASSERT_EQ(result2, 234);
q.pop(result3);
ASSERT_EQ(result3, 999);
}
TEST_F(TestLockFreeQueue, PeekWhenEmptyReturnsFalse){
ASSERT_EQ(q.peek(result1), false);
}
TEST_F(TestLockFreeQueue, PeekWhenNotEmptyReturnsTrue){
q.push(123);
ASSERT_EQ(q.peek(result1), true);
}
TEST_F(TestLockFreeQueue, PeekReturnsCorrectValueOnce){
q.push(456);
q.peek(result1);
ASSERT_EQ(result1, 456);
}
TEST_F(TestLockFreeQueue, PeekReturnsCorrectValueTwice){
q.push(456);
q.peek(result1);
q.peek(result2);
ASSERT_EQ(result2, 456);
}
TEST_F(TestLockFreeQueue, SizeReturnsZeroAfterInit){
ASSERT_EQ(q.size(), 0);
}
TEST_F(TestLockFreeQueue, SizeIsOneAfterPushOnce){
q.push(321);
ASSERT_EQ(q.size(), 1);
}
TEST_F(TestLockFreeQueue, SizeIsCorrectAfterPushingMaxItems){
for (int i = 0; i < kQueueCapacity; ++i) { q.push(i); }
ASSERT_EQ(q.size(), kQueueCapacity);
}
TEST_F(TestLockFreeQueue, SizeCorrectAfterWriteCounterWraps){
const uint32_t kCapacity = (uint32_t) 1 << 7;
LockFreeQueue<int, kCapacity, uint8_t> myQ;
for (int i = 0; i < UINT8_MAX; ++i) {
myQ.push(i);
myQ.pop(result1);
}
myQ.push(1);
ASSERT_EQ(myQ.size(), 1);
}
TEST_F(TestLockFreeQueue, MultiThreadedTest){
// Push and pop from the queue concurrently
// Check that the queue is empty
// Check that the order of the read values matches the order of the written values
constexpr int kQueueCapacity = 2048;
LockFreeQueue<int, kQueueCapacity> myQ;
std::array<int, kQueueCapacity> sourceData;
std::array<int, kQueueCapacity> targetData { 0 };
// Populate the source data
for (int i = 0; i < kQueueCapacity; i++){
sourceData[i] = i;
}
std::thread writer([&myQ, &sourceData](){
for (int i = 0; i < kQueueCapacity; i++){
myQ.push(sourceData[i]);
}
});
std::thread reader([&myQ, &targetData](){
for (int i = 0; i < kQueueCapacity; i++){
// pop the latest element, or wait for it to become available
while (!myQ.pop(targetData[i])){
std::cout << "Waiting for element at index " << i << " to be written" << std::endl;
usleep(500);
}
}
});
writer.join();
reader.join();
int v;
ASSERT_FALSE(myQ.pop(v));
// Check that the target matches the source
for (int i = 0; i < kQueueCapacity; i++){
ASSERT_EQ(sourceData[i], targetData[i]) << "Elements at index " << i << " did not match";
}
}

View file

@ -0,0 +1,67 @@
file(GLOB ROOT_SOURCE *.cpp)
file(GLOB ROOT_INLINE *.inl)
file(GLOB ROOT_HEADER *.hpp)
file(GLOB ROOT_TEXT ../*.txt)
file(GLOB ROOT_MD ../*.md)
file(GLOB ROOT_NAT ../util/glm.natvis)
file(GLOB_RECURSE CORE_SOURCE ./detail/*.cpp)
file(GLOB_RECURSE CORE_INLINE ./detail/*.inl)
file(GLOB_RECURSE CORE_HEADER ./detail/*.hpp)
file(GLOB_RECURSE GTC_SOURCE ./gtc/*.cpp)
file(GLOB_RECURSE GTC_INLINE ./gtc/*.inl)
file(GLOB_RECURSE GTC_HEADER ./gtc/*.hpp)
file(GLOB_RECURSE GTX_SOURCE ./gtx/*.cpp)
file(GLOB_RECURSE GTX_INLINE ./gtx/*.inl)
file(GLOB_RECURSE GTX_HEADER ./gtx/*.hpp)
file(GLOB_RECURSE SIMD_SOURCE ./simd/*.cpp)
file(GLOB_RECURSE SIMD_INLINE ./simd/*.inl)
file(GLOB_RECURSE SIMD_HEADER ./simd/*.h)
source_group("Text Files" FILES ${ROOT_TEXT} ${ROOT_MD})
source_group("Core Files" FILES ${CORE_SOURCE})
source_group("Core Files" FILES ${CORE_INLINE})
source_group("Core Files" FILES ${CORE_HEADER})
source_group("GTC Files" FILES ${GTC_SOURCE})
source_group("GTC Files" FILES ${GTC_INLINE})
source_group("GTC Files" FILES ${GTC_HEADER})
source_group("GTX Files" FILES ${GTX_SOURCE})
source_group("GTX Files" FILES ${GTX_INLINE})
source_group("GTX Files" FILES ${GTX_HEADER})
source_group("SIMD Files" FILES ${SIMD_SOURCE})
source_group("SIMD Files" FILES ${SIMD_INLINE})
source_group("SIMD Files" FILES ${SIMD_HEADER})
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/..)
if(GLM_STATIC_LIBRARY_ENABLE OR GLM_DYNAMIC_LIBRARY_ENABLE)
if(GLM_STATIC_LIBRARY_ENABLE)
add_library(glm_static STATIC ${ROOT_TEXT} ${ROOT_MD} ${ROOT_NAT}
${ROOT_SOURCE} ${ROOT_INLINE} ${ROOT_HEADER}
${CORE_SOURCE} ${CORE_INLINE} ${CORE_HEADER}
${GTC_SOURCE} ${GTC_INLINE} ${GTC_HEADER}
${GTX_SOURCE} ${GTX_INLINE} ${GTX_HEADER}
${SIMD_SOURCE} ${SIMD_INLINE} ${SIMD_HEADER})
endif(GLM_STATIC_LIBRARY_ENABLE)
if(GLM_DYNAMIC_LIBRARY_ENABLE)
add_library(glm_shared SHARED ${ROOT_TEXT} ${ROOT_MD} ${ROOT_NAT}
${ROOT_SOURCE} ${ROOT_INLINE} ${ROOT_HEADER}
${CORE_SOURCE} ${CORE_INLINE} ${CORE_HEADER}
${GTC_SOURCE} ${GTC_INLINE} ${GTC_HEADER}
${GTX_SOURCE} ${GTX_INLINE} ${GTX_HEADER}
${SIMD_SOURCE} ${SIMD_INLINE} ${SIMD_HEADER})
endif(GLM_DYNAMIC_LIBRARY_ENABLE)
else(GLM_STATIC_LIBRARY_ENABLE OR GLM_DYNAMIC_LIBRARY_ENABLE)
add_executable(glm_dummy ${ROOT_TEXT} ${ROOT_MD} ${ROOT_NAT}
${ROOT_SOURCE} ${ROOT_INLINE} ${ROOT_HEADER}
${CORE_SOURCE} ${CORE_INLINE} ${CORE_HEADER}
${GTC_SOURCE} ${GTC_INLINE} ${GTC_HEADER}
${GTX_SOURCE} ${GTX_INLINE} ${GTX_HEADER}
${SIMD_SOURCE} ${SIMD_INLINE} ${SIMD_HEADER})
endif(GLM_STATIC_LIBRARY_ENABLE OR GLM_DYNAMIC_LIBRARY_ENABLE)

View file

@ -0,0 +1,6 @@
/// @ref core
/// @file glm/common.hpp
#pragma once
#include "detail/func_common.hpp"

View file

@ -0,0 +1,399 @@
/// @ref core
/// @file glm/detail/_features.hpp
#pragma once
// #define GLM_CXX98_EXCEPTIONS
// #define GLM_CXX98_RTTI
// #define GLM_CXX11_RVALUE_REFERENCES
// Rvalue references - GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2118.html
// GLM_CXX11_TRAILING_RETURN
// Rvalue references for *this - GCC not supported
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2439.htm
// GLM_CXX11_NONSTATIC_MEMBER_INIT
// Initialization of class objects by rvalues - GCC any
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1610.html
// GLM_CXX11_NONSTATIC_MEMBER_INIT
// Non-static data member initializers - GCC 4.7
// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2756.htm
// #define GLM_CXX11_VARIADIC_TEMPLATE
// Variadic templates - GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2242.pdf
//
// Extending variadic template template parameters - GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2555.pdf
// #define GLM_CXX11_GENERALIZED_INITIALIZERS
// Initializer lists - GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2672.htm
// #define GLM_CXX11_STATIC_ASSERT
// Static assertions - GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
// #define GLM_CXX11_AUTO_TYPE
// auto-typed variables - GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf
// #define GLM_CXX11_AUTO_TYPE
// Multi-declarator auto - GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1737.pdf
// #define GLM_CXX11_AUTO_TYPE
// Removal of auto as a storage-class specifier - GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2546.htm
// #define GLM_CXX11_AUTO_TYPE
// New function declarator syntax - GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2541.htm
// #define GLM_CXX11_LAMBDAS
// New wording for C++0x lambdas - GCC 4.5
// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2927.pdf
// #define GLM_CXX11_DECLTYPE
// Declared type of an expression - GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2343.pdf
//
// Right angle brackets - GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html
//
// Default template arguments for function templates DR226 GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#226
//
// Solving the SFINAE problem for expressions DR339 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2634.html
// #define GLM_CXX11_ALIAS_TEMPLATE
// Template aliases N2258 GCC 4.7
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2258.pdf
//
// Extern templates N1987 Yes
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1987.htm
// #define GLM_CXX11_NULLPTR
// Null pointer constant N2431 GCC 4.6
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf
// #define GLM_CXX11_STRONG_ENUMS
// Strongly-typed enums N2347 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf
//
// Forward declarations for enums N2764 GCC 4.6
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2764.pdf
//
// Generalized attributes N2761 GCC 4.8
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
//
// Generalized constant expressions N2235 GCC 4.6
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2235.pdf
//
// Alignment support N2341 GCC 4.8
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2341.pdf
// #define GLM_CXX11_DELEGATING_CONSTRUCTORS
// Delegating constructors N1986 GCC 4.7
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf
//
// Inheriting constructors N2540 GCC 4.8
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2540.htm
// #define GLM_CXX11_EXPLICIT_CONVERSIONS
// Explicit conversion operators N2437 GCC 4.5
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf
//
// New character types N2249 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2249.html
//
// Unicode string literals N2442 GCC 4.5
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm
//
// Raw string literals N2442 GCC 4.5
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm
//
// Universal character name literals N2170 GCC 4.5
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2170.html
// #define GLM_CXX11_USER_LITERALS
// User-defined literals N2765 GCC 4.7
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2765.pdf
//
// Standard Layout Types N2342 GCC 4.5
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2342.htm
// #define GLM_CXX11_DEFAULTED_FUNCTIONS
// #define GLM_CXX11_DELETED_FUNCTIONS
// Defaulted and deleted functions N2346 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm
//
// Extended friend declarations N1791 GCC 4.7
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1791.pdf
//
// Extending sizeof N2253 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2253.html
// #define GLM_CXX11_INLINE_NAMESPACES
// Inline namespaces N2535 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm
// #define GLM_CXX11_UNRESTRICTED_UNIONS
// Unrestricted unions N2544 GCC 4.6
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2544.pdf
// #define GLM_CXX11_LOCAL_TYPE_TEMPLATE_ARGS
// Local and unnamed types as template arguments N2657 GCC 4.5
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
// #define GLM_CXX11_RANGE_FOR
// Range-based for N2930 GCC 4.6
// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2930.html
// #define GLM_CXX11_OVERRIDE_CONTROL
// Explicit virtual overrides N2928 N3206 N3272 GCC 4.7
// http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2928.htm
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3206.htm
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3272.htm
//
// Minimal support for garbage collection and reachability-based leak detection N2670 No
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2670.htm
// #define GLM_CXX11_NOEXCEPT
// Allowing move constructors to throw [noexcept] N3050 GCC 4.6 (core language only)
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html
//
// Defining move special member functions N3053 GCC 4.6
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3053.html
//
// Sequence points N2239 Yes
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2239.html
//
// Atomic operations N2427 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2239.html
//
// Strong Compare and Exchange N2748 GCC 4.5
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
//
// Bidirectional Fences N2752 GCC 4.8
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2752.htm
//
// Memory model N2429 GCC 4.8
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
//
// Data-dependency ordering: atomics and memory model N2664 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2664.htm
//
// Propagating exceptions N2179 GCC 4.4
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2179.html
//
// Abandoning a process and at_quick_exit N2440 GCC 4.8
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2440.htm
//
// Allow atomics use in signal handlers N2547 Yes
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2547.htm
//
// Thread-local storage N2659 GCC 4.8
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2659.htm
//
// Dynamic initialization and destruction with concurrency N2660 GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2660.htm
//
// __func__ predefined identifier N2340 GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2340.htm
//
// C99 preprocessor N1653 GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1653.htm
//
// long long N1811 GCC 4.3
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1811.pdf
//
// Extended integral types N1988 Yes
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1988.pdf
#if(GLM_COMPILER & GLM_COMPILER_GCC)
# if(GLM_COMPILER >= GLM_COMPILER_GCC43)
# define GLM_CXX11_STATIC_ASSERT
# endif
#elif(GLM_COMPILER & GLM_COMPILER_CLANG)
# if(__has_feature(cxx_exceptions))
# define GLM_CXX98_EXCEPTIONS
# endif
# if(__has_feature(cxx_rtti))
# define GLM_CXX98_RTTI
# endif
# if(__has_feature(cxx_access_control_sfinae))
# define GLM_CXX11_ACCESS_CONTROL_SFINAE
# endif
# if(__has_feature(cxx_alias_templates))
# define GLM_CXX11_ALIAS_TEMPLATE
# endif
# if(__has_feature(cxx_alignas))
# define GLM_CXX11_ALIGNAS
# endif
# if(__has_feature(cxx_attributes))
# define GLM_CXX11_ATTRIBUTES
# endif
# if(__has_feature(cxx_constexpr))
# define GLM_CXX11_CONSTEXPR
# endif
# if(__has_feature(cxx_decltype))
# define GLM_CXX11_DECLTYPE
# endif
# if(__has_feature(cxx_default_function_template_args))
# define GLM_CXX11_DEFAULT_FUNCTION_TEMPLATE_ARGS
# endif
# if(__has_feature(cxx_defaulted_functions))
# define GLM_CXX11_DEFAULTED_FUNCTIONS
# endif
# if(__has_feature(cxx_delegating_constructors))
# define GLM_CXX11_DELEGATING_CONSTRUCTORS
# endif
# if(__has_feature(cxx_deleted_functions))
# define GLM_CXX11_DELETED_FUNCTIONS
# endif
# if(__has_feature(cxx_explicit_conversions))
# define GLM_CXX11_EXPLICIT_CONVERSIONS
# endif
# if(__has_feature(cxx_generalized_initializers))
# define GLM_CXX11_GENERALIZED_INITIALIZERS
# endif
# if(__has_feature(cxx_implicit_moves))
# define GLM_CXX11_IMPLICIT_MOVES
# endif
# if(__has_feature(cxx_inheriting_constructors))
# define GLM_CXX11_INHERITING_CONSTRUCTORS
# endif
# if(__has_feature(cxx_inline_namespaces))
# define GLM_CXX11_INLINE_NAMESPACES
# endif
# if(__has_feature(cxx_lambdas))
# define GLM_CXX11_LAMBDAS
# endif
# if(__has_feature(cxx_local_type_template_args))
# define GLM_CXX11_LOCAL_TYPE_TEMPLATE_ARGS
# endif
# if(__has_feature(cxx_noexcept))
# define GLM_CXX11_NOEXCEPT
# endif
# if(__has_feature(cxx_nonstatic_member_init))
# define GLM_CXX11_NONSTATIC_MEMBER_INIT
# endif
# if(__has_feature(cxx_nullptr))
# define GLM_CXX11_NULLPTR
# endif
# if(__has_feature(cxx_override_control))
# define GLM_CXX11_OVERRIDE_CONTROL
# endif
# if(__has_feature(cxx_reference_qualified_functions))
# define GLM_CXX11_REFERENCE_QUALIFIED_FUNCTIONS
# endif
# if(__has_feature(cxx_range_for))
# define GLM_CXX11_RANGE_FOR
# endif
# if(__has_feature(cxx_raw_string_literals))
# define GLM_CXX11_RAW_STRING_LITERALS
# endif
# if(__has_feature(cxx_rvalue_references))
# define GLM_CXX11_RVALUE_REFERENCES
# endif
# if(__has_feature(cxx_static_assert))
# define GLM_CXX11_STATIC_ASSERT
# endif
# if(__has_feature(cxx_auto_type))
# define GLM_CXX11_AUTO_TYPE
# endif
# if(__has_feature(cxx_strong_enums))
# define GLM_CXX11_STRONG_ENUMS
# endif
# if(__has_feature(cxx_trailing_return))
# define GLM_CXX11_TRAILING_RETURN
# endif
# if(__has_feature(cxx_unicode_literals))
# define GLM_CXX11_UNICODE_LITERALS
# endif
# if(__has_feature(cxx_unrestricted_unions))
# define GLM_CXX11_UNRESTRICTED_UNIONS
# endif
# if(__has_feature(cxx_user_literals))
# define GLM_CXX11_USER_LITERALS
# endif
# if(__has_feature(cxx_variadic_templates))
# define GLM_CXX11_VARIADIC_TEMPLATES
# endif
#endif//(GLM_COMPILER & GLM_COMPILER_CLANG)

View file

@ -0,0 +1,30 @@
/// @ref core
/// @file glm/detail/_fixes.hpp
#include <cmath>
//! Workaround for compatibility with other libraries
#ifdef max
#undef max
#endif
//! Workaround for compatibility with other libraries
#ifdef min
#undef min
#endif
//! Workaround for Android
#ifdef isnan
#undef isnan
#endif
//! Workaround for Android
#ifdef isinf
#undef isinf
#endif
//! Workaround for Chrone Native Client
#ifdef log2
#undef log2
#endif

View file

@ -0,0 +1,107 @@
/// @ref core
/// @file glm/detail/_noise.hpp
#pragma once
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../common.hpp"
namespace glm{
namespace detail
{
template <typename T>
GLM_FUNC_QUALIFIER T mod289(T const & x)
{
return x - floor(x * static_cast<T>(1.0) / static_cast<T>(289.0)) * static_cast<T>(289.0);
}
template <typename T>
GLM_FUNC_QUALIFIER T permute(T const & x)
{
return mod289(((x * static_cast<T>(34)) + static_cast<T>(1)) * x);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec2<T, P> permute(tvec2<T, P> const & x)
{
return mod289(((x * static_cast<T>(34)) + static_cast<T>(1)) * x);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> permute(tvec3<T, P> const & x)
{
return mod289(((x * static_cast<T>(34)) + static_cast<T>(1)) * x);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> permute(tvec4<T, P> const & x)
{
return mod289(((x * static_cast<T>(34)) + static_cast<T>(1)) * x);
}
/*
template <typename T, precision P, template<typename> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> permute(vecType<T, P> const & x)
{
return mod289(((x * T(34)) + T(1)) * x);
}
*/
template <typename T>
GLM_FUNC_QUALIFIER T taylorInvSqrt(T const & r)
{
return T(1.79284291400159) - T(0.85373472095314) * r;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec2<T, P> taylorInvSqrt(tvec2<T, P> const & r)
{
return T(1.79284291400159) - T(0.85373472095314) * r;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> taylorInvSqrt(tvec3<T, P> const & r)
{
return T(1.79284291400159) - T(0.85373472095314) * r;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> taylorInvSqrt(tvec4<T, P> const & r)
{
return T(1.79284291400159) - T(0.85373472095314) * r;
}
/*
template <typename T, precision P, template<typename> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> taylorInvSqrt(vecType<T, P> const & r)
{
return T(1.79284291400159) - T(0.85373472095314) * r;
}
*/
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec2<T, P> fade(tvec2<T, P> const & t)
{
return (t * t * t) * (t * (t * T(6) - T(15)) + T(10));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> fade(tvec3<T, P> const & t)
{
return (t * t * t) * (t * (t * T(6) - T(15)) + T(10));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> fade(tvec4<T, P> const & t)
{
return (t * t * t) * (t * (t * T(6) - T(15)) + T(10));
}
/*
template <typename T, precision P, template <typename> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> fade(vecType<T, P> const & t)
{
return (t * t * t) * (t * (t * T(6) - T(15)) + T(10));
}
*/
}//namespace detail
}//namespace glm

View file

@ -0,0 +1,797 @@
/// @ref core
/// @file glm/detail/_swizzle.hpp
#pragma once
namespace glm{
namespace detail
{
// Internal class for implementing swizzle operators
template <typename T, int N>
struct _swizzle_base0
{
protected:
GLM_FUNC_QUALIFIER T& elem(size_t i){ return (reinterpret_cast<T*>(_buffer))[i]; }
GLM_FUNC_QUALIFIER T const& elem(size_t i) const{ return (reinterpret_cast<const T*>(_buffer))[i]; }
// Use an opaque buffer to *ensure* the compiler doesn't call a constructor.
// The size 1 buffer is assumed to aligned to the actual members so that the
// elem()
char _buffer[1];
};
template <int N, typename T, precision P, template <typename, precision> class vecType, int E0, int E1, int E2, int E3, bool Aligned>
struct _swizzle_base1 : public _swizzle_base0<T, N>
{
};
template <typename T, precision P, template <typename, precision> class vecType, int E0, int E1, bool Aligned>
struct _swizzle_base1<2, T, P, vecType, E0,E1,-1,-2, Aligned> : public _swizzle_base0<T, 2>
{
GLM_FUNC_QUALIFIER vecType<T, P> operator ()() const { return vecType<T, P>(this->elem(E0), this->elem(E1)); }
};
template <typename T, precision P, template <typename, precision> class vecType, int E0, int E1, int E2, bool Aligned>
struct _swizzle_base1<3, T, P, vecType, E0,E1,E2,-1, Aligned> : public _swizzle_base0<T, 3>
{
GLM_FUNC_QUALIFIER vecType<T, P> operator ()() const { return vecType<T, P>(this->elem(E0), this->elem(E1), this->elem(E2)); }
};
template <typename T, precision P, template <typename, precision> class vecType, int E0, int E1, int E2, int E3, bool Aligned>
struct _swizzle_base1<4, T, P, vecType, E0,E1,E2,E3, Aligned> : public _swizzle_base0<T, 4>
{
GLM_FUNC_QUALIFIER vecType<T, P> operator ()() const { return vecType<T, P>(this->elem(E0), this->elem(E1), this->elem(E2), this->elem(E3)); }
};
// Internal class for implementing swizzle operators
/*
Template parameters:
ValueType = type of scalar values (e.g. float, double)
VecType = class the swizzle is applies to (e.g. tvec3<float>)
N = number of components in the vector (e.g. 3)
E0...3 = what index the n-th element of this swizzle refers to in the unswizzled vec
DUPLICATE_ELEMENTS = 1 if there is a repeated element, 0 otherwise (used to specialize swizzles
containing duplicate elements so that they cannot be used as r-values).
*/
template <int N, typename T, precision P, template <typename, precision> class vecType, int E0, int E1, int E2, int E3, int DUPLICATE_ELEMENTS>
struct _swizzle_base2 : public _swizzle_base1<N, T, P, vecType, E0,E1,E2,E3, detail::is_aligned<P>::value>
{
GLM_FUNC_QUALIFIER _swizzle_base2& operator= (const T& t)
{
for (int i = 0; i < N; ++i)
(*this)[i] = t;
return *this;
}
GLM_FUNC_QUALIFIER _swizzle_base2& operator= (vecType<T, P> const& that)
{
struct op {
GLM_FUNC_QUALIFIER void operator() (T& e, T& t) { e = t; }
};
_apply_op(that, op());
return *this;
}
GLM_FUNC_QUALIFIER void operator -= (vecType<T, P> const& that)
{
struct op {
GLM_FUNC_QUALIFIER void operator() (T& e, T& t) { e -= t; }
};
_apply_op(that, op());
}
GLM_FUNC_QUALIFIER void operator += (vecType<T, P> const& that)
{
struct op {
GLM_FUNC_QUALIFIER void operator() (T& e, T& t) { e += t; }
};
_apply_op(that, op());
}
GLM_FUNC_QUALIFIER void operator *= (vecType<T, P> const& that)
{
struct op {
GLM_FUNC_QUALIFIER void operator() (T& e, T& t) { e *= t; }
};
_apply_op(that, op());
}
GLM_FUNC_QUALIFIER void operator /= (vecType<T, P> const& that)
{
struct op {
GLM_FUNC_QUALIFIER void operator() (T& e, T& t) { e /= t; }
};
_apply_op(that, op());
}
GLM_FUNC_QUALIFIER T& operator[](size_t i)
{
const int offset_dst[4] = { E0, E1, E2, E3 };
return this->elem(offset_dst[i]);
}
GLM_FUNC_QUALIFIER T operator[](size_t i) const
{
const int offset_dst[4] = { E0, E1, E2, E3 };
return this->elem(offset_dst[i]);
}
protected:
template <typename U>
GLM_FUNC_QUALIFIER void _apply_op(vecType<T, P> const& that, U op)
{
// Make a copy of the data in this == &that.
// The copier should optimize out the copy in cases where the function is
// properly inlined and the copy is not necessary.
T t[N];
for (int i = 0; i < N; ++i)
t[i] = that[i];
for (int i = 0; i < N; ++i)
op( (*this)[i], t[i] );
}
};
// Specialization for swizzles containing duplicate elements. These cannot be modified.
template <int N, typename T, precision P, template <typename, precision> class vecType, int E0, int E1, int E2, int E3>
struct _swizzle_base2<N, T, P, vecType, E0,E1,E2,E3, 1> : public _swizzle_base1<N, T, P, vecType, E0,E1,E2,E3, detail::is_aligned<P>::value>
{
struct Stub {};
GLM_FUNC_QUALIFIER _swizzle_base2& operator= (Stub const &) { return *this; }
GLM_FUNC_QUALIFIER T operator[] (size_t i) const
{
const int offset_dst[4] = { E0, E1, E2, E3 };
return this->elem(offset_dst[i]);
}
};
template <int N, typename T, precision P, template <typename, precision> class vecType, int E0, int E1, int E2, int E3>
struct _swizzle : public _swizzle_base2<N, T, P, vecType, E0, E1, E2, E3, (E0 == E1 || E0 == E2 || E0 == E3 || E1 == E2 || E1 == E3 || E2 == E3)>
{
typedef _swizzle_base2<N, T, P, vecType, E0, E1, E2, E3, (E0 == E1 || E0 == E2 || E0 == E3 || E1 == E2 || E1 == E3 || E2 == E3)> base_type;
using base_type::operator=;
GLM_FUNC_QUALIFIER operator vecType<T, P> () const { return (*this)(); }
};
//
// To prevent the C++ syntax from getting entirely overwhelming, define some alias macros
//
#define _GLM_SWIZZLE_TEMPLATE1 template <int N, typename T, precision P, template <typename, precision> class vecType, int E0, int E1, int E2, int E3>
#define _GLM_SWIZZLE_TEMPLATE2 template <int N, typename T, precision P, template <typename, precision> class vecType, int E0, int E1, int E2, int E3, int F0, int F1, int F2, int F3>
#define _GLM_SWIZZLE_TYPE1 _swizzle<N, T, P, vecType, E0, E1, E2, E3>
#define _GLM_SWIZZLE_TYPE2 _swizzle<N, T, P, vecType, F0, F1, F2, F3>
//
// Wrapper for a binary operator (e.g. u.yy + v.zy)
//
#define _GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(OPERAND) \
_GLM_SWIZZLE_TEMPLATE2 \
GLM_FUNC_QUALIFIER vecType<T, P> operator OPERAND ( const _GLM_SWIZZLE_TYPE1& a, const _GLM_SWIZZLE_TYPE2& b) \
{ \
return a() OPERAND b(); \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER vecType<T, P> operator OPERAND ( const _GLM_SWIZZLE_TYPE1& a, const vecType<T, P>& b) \
{ \
return a() OPERAND b; \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER vecType<T, P> operator OPERAND ( const vecType<T, P>& a, const _GLM_SWIZZLE_TYPE1& b) \
{ \
return a OPERAND b(); \
}
//
// Wrapper for a operand between a swizzle and a binary (e.g. 1.0f - u.xyz)
//
#define _GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(OPERAND) \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER vecType<T, P> operator OPERAND ( const _GLM_SWIZZLE_TYPE1& a, const T& b) \
{ \
return a() OPERAND b; \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER vecType<T, P> operator OPERAND ( const T& a, const _GLM_SWIZZLE_TYPE1& b) \
{ \
return a OPERAND b(); \
}
//
// Macro for wrapping a function taking one argument (e.g. abs())
//
#define _GLM_SWIZZLE_FUNCTION_1_ARGS(RETURN_TYPE,FUNCTION) \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const _GLM_SWIZZLE_TYPE1& a) \
{ \
return FUNCTION(a()); \
}
//
// Macro for wrapping a function taking two vector arguments (e.g. dot()).
//
#define _GLM_SWIZZLE_FUNCTION_2_ARGS(RETURN_TYPE,FUNCTION) \
_GLM_SWIZZLE_TEMPLATE2 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const _GLM_SWIZZLE_TYPE1& a, const _GLM_SWIZZLE_TYPE2& b) \
{ \
return FUNCTION(a(), b()); \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const _GLM_SWIZZLE_TYPE1& a, const _GLM_SWIZZLE_TYPE1& b) \
{ \
return FUNCTION(a(), b()); \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const _GLM_SWIZZLE_TYPE1& a, const typename V& b) \
{ \
return FUNCTION(a(), b); \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const V& a, const _GLM_SWIZZLE_TYPE1& b) \
{ \
return FUNCTION(a, b()); \
}
//
// Macro for wrapping a function take 2 vec arguments followed by a scalar (e.g. mix()).
//
#define _GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(RETURN_TYPE,FUNCTION) \
_GLM_SWIZZLE_TEMPLATE2 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const _GLM_SWIZZLE_TYPE1& a, const _GLM_SWIZZLE_TYPE2& b, const T& c) \
{ \
return FUNCTION(a(), b(), c); \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const _GLM_SWIZZLE_TYPE1& a, const _GLM_SWIZZLE_TYPE1& b, const T& c) \
{ \
return FUNCTION(a(), b(), c); \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const _GLM_SWIZZLE_TYPE1& a, const typename S0::vec_type& b, const T& c)\
{ \
return FUNCTION(a(), b, c); \
} \
_GLM_SWIZZLE_TEMPLATE1 \
GLM_FUNC_QUALIFIER typename _GLM_SWIZZLE_TYPE1::RETURN_TYPE FUNCTION(const typename V& a, const _GLM_SWIZZLE_TYPE1& b, const T& c) \
{ \
return FUNCTION(a, b(), c); \
}
}//namespace detail
}//namespace glm
namespace glm
{
namespace detail
{
_GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(-)
_GLM_SWIZZLE_SCALAR_BINARY_OPERATOR_IMPLEMENTATION(*)
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(+)
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(-)
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(*)
_GLM_SWIZZLE_VECTOR_BINARY_OPERATOR_IMPLEMENTATION(/)
}
//
// Swizzles are distinct types from the unswizzled type. The below macros will
// provide template specializations for the swizzle types for the given functions
// so that the compiler does not have any ambiguity to choosing how to handle
// the function.
//
// The alternative is to use the operator()() when calling the function in order
// to explicitly convert the swizzled type to the unswizzled type.
//
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, abs);
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acos);
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, acosh);
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, all);
//_GLM_SWIZZLE_FUNCTION_1_ARGS(vec_type, any);
//_GLM_SWIZZLE_FUNCTION_2_ARGS(value_type, dot);
//_GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, cross);
//_GLM_SWIZZLE_FUNCTION_2_ARGS(vec_type, step);
//_GLM_SWIZZLE_FUNCTION_2_ARGS_SCALAR(vec_type, mix);
}
#define _GLM_SWIZZLE2_2_MEMBERS(T, P, V, E0,E1) \
struct { detail::_swizzle<2, T, P, V, 0,0,-1,-2> E0 ## E0; }; \
struct { detail::_swizzle<2, T, P, V, 0,1,-1,-2> E0 ## E1; }; \
struct { detail::_swizzle<2, T, P, V, 1,0,-1,-2> E1 ## E0; }; \
struct { detail::_swizzle<2, T, P, V, 1,1,-1,-2> E1 ## E1; };
#define _GLM_SWIZZLE2_3_MEMBERS(T, P, V, E0,E1) \
struct { detail::_swizzle<3,T, P, V, 0,0,0,-1> E0 ## E0 ## E0; }; \
struct { detail::_swizzle<3,T, P, V, 0,0,1,-1> E0 ## E0 ## E1; }; \
struct { detail::_swizzle<3,T, P, V, 0,1,0,-1> E0 ## E1 ## E0; }; \
struct { detail::_swizzle<3,T, P, V, 0,1,1,-1> E0 ## E1 ## E1; }; \
struct { detail::_swizzle<3,T, P, V, 1,0,0,-1> E1 ## E0 ## E0; }; \
struct { detail::_swizzle<3,T, P, V, 1,0,1,-1> E1 ## E0 ## E1; }; \
struct { detail::_swizzle<3,T, P, V, 1,1,0,-1> E1 ## E1 ## E0; }; \
struct { detail::_swizzle<3,T, P, V, 1,1,1,-1> E1 ## E1 ## E1; };
#define _GLM_SWIZZLE2_4_MEMBERS(T, P, V, E0,E1) \
struct { detail::_swizzle<4,T, P, V, 0,0,0,0> E0 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,0,1> E0 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,1,0> E0 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,1,1> E0 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,0,0> E0 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,0,1> E0 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,1,0> E0 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,1,1> E0 ## E1 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,0,0> E1 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,0,1> E1 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,1,0> E1 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,1,1> E1 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,0,0> E1 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,0,1> E1 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,1,0> E1 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,1,1> E1 ## E1 ## E1 ## E1; };
#define _GLM_SWIZZLE3_2_MEMBERS(T, P, V, E0,E1,E2) \
struct { detail::_swizzle<2,T, P, V, 0,0,-1,-2> E0 ## E0; }; \
struct { detail::_swizzle<2,T, P, V, 0,1,-1,-2> E0 ## E1; }; \
struct { detail::_swizzle<2,T, P, V, 0,2,-1,-2> E0 ## E2; }; \
struct { detail::_swizzle<2,T, P, V, 1,0,-1,-2> E1 ## E0; }; \
struct { detail::_swizzle<2,T, P, V, 1,1,-1,-2> E1 ## E1; }; \
struct { detail::_swizzle<2,T, P, V, 1,2,-1,-2> E1 ## E2; }; \
struct { detail::_swizzle<2,T, P, V, 2,0,-1,-2> E2 ## E0; }; \
struct { detail::_swizzle<2,T, P, V, 2,1,-1,-2> E2 ## E1; }; \
struct { detail::_swizzle<2,T, P, V, 2,2,-1,-2> E2 ## E2; };
#define _GLM_SWIZZLE3_3_MEMBERS(T, P, V ,E0,E1,E2) \
struct { detail::_swizzle<3, T, P, V, 0,0,0,-1> E0 ## E0 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 0,0,1,-1> E0 ## E0 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 0,0,2,-1> E0 ## E0 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 0,1,0,-1> E0 ## E1 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 0,1,1,-1> E0 ## E1 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 0,1,2,-1> E0 ## E1 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 0,2,0,-1> E0 ## E2 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 0,2,1,-1> E0 ## E2 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 0,2,2,-1> E0 ## E2 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 1,0,0,-1> E1 ## E0 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 1,0,1,-1> E1 ## E0 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 1,0,2,-1> E1 ## E0 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 1,1,0,-1> E1 ## E1 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 1,1,1,-1> E1 ## E1 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 1,1,2,-1> E1 ## E1 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 1,2,0,-1> E1 ## E2 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 1,2,1,-1> E1 ## E2 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 1,2,2,-1> E1 ## E2 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 2,0,0,-1> E2 ## E0 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 2,0,1,-1> E2 ## E0 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 2,0,2,-1> E2 ## E0 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 2,1,0,-1> E2 ## E1 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 2,1,1,-1> E2 ## E1 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 2,1,2,-1> E2 ## E1 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 2,2,0,-1> E2 ## E2 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 2,2,1,-1> E2 ## E2 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 2,2,2,-1> E2 ## E2 ## E2; };
#define _GLM_SWIZZLE3_4_MEMBERS(T, P, V, E0,E1,E2) \
struct { detail::_swizzle<4,T, P, V, 0,0,0,0> E0 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,0,1> E0 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,0,2> E0 ## E0 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,1,0> E0 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,1,1> E0 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,1,2> E0 ## E0 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,2,0> E0 ## E0 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,2,1> E0 ## E0 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,0,2,2> E0 ## E0 ## E2 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,0,0> E0 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,0,1> E0 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,0,2> E0 ## E1 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,1,0> E0 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,1,1> E0 ## E1 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,1,2> E0 ## E1 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,2,0> E0 ## E1 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,2,1> E0 ## E1 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,1,2,2> E0 ## E1 ## E2 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,0,0> E0 ## E2 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,0,1> E0 ## E2 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,0,2> E0 ## E2 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,1,0> E0 ## E2 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,1,1> E0 ## E2 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,1,2> E0 ## E2 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,2,0> E0 ## E2 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,2,1> E0 ## E2 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 0,2,2,2> E0 ## E2 ## E2 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,0,0> E1 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,0,1> E1 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,0,2> E1 ## E0 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,1,0> E1 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,1,1> E1 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,1,2> E1 ## E0 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,2,0> E1 ## E0 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,2,1> E1 ## E0 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,0,2,2> E1 ## E0 ## E2 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,0,0> E1 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,0,1> E1 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,0,2> E1 ## E1 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,1,0> E1 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,1,1> E1 ## E1 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,1,2> E1 ## E1 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,2,0> E1 ## E1 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,2,1> E1 ## E1 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,1,2,2> E1 ## E1 ## E2 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,0,0> E1 ## E2 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,0,1> E1 ## E2 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,0,2> E1 ## E2 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,1,0> E1 ## E2 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,1,1> E1 ## E2 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,1,2> E1 ## E2 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,2,0> E1 ## E2 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,2,1> E1 ## E2 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 1,2,2,2> E1 ## E2 ## E2 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,0,0> E2 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,0,1> E2 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,0,2> E2 ## E0 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,1,0> E2 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,1,1> E2 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,1,2> E2 ## E0 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,2,0> E2 ## E0 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,2,1> E2 ## E0 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,0,2,2> E2 ## E0 ## E2 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,0,0> E2 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,0,1> E2 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,0,2> E2 ## E1 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,1,0> E2 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,1,1> E2 ## E1 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,1,2> E2 ## E1 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,2,0> E2 ## E1 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,2,1> E2 ## E1 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,1,2,2> E2 ## E1 ## E2 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,0,0> E2 ## E2 ## E0 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,0,1> E2 ## E2 ## E0 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,0,2> E2 ## E2 ## E0 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,1,0> E2 ## E2 ## E1 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,1,1> E2 ## E2 ## E1 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,1,2> E2 ## E2 ## E1 ## E2; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,2,0> E2 ## E2 ## E2 ## E0; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,2,1> E2 ## E2 ## E2 ## E1; }; \
struct { detail::_swizzle<4,T, P, V, 2,2,2,2> E2 ## E2 ## E2 ## E2; };
#define _GLM_SWIZZLE4_2_MEMBERS(T, P, V, E0,E1,E2,E3) \
struct { detail::_swizzle<2,T, P, V, 0,0,-1,-2> E0 ## E0; }; \
struct { detail::_swizzle<2,T, P, V, 0,1,-1,-2> E0 ## E1; }; \
struct { detail::_swizzle<2,T, P, V, 0,2,-1,-2> E0 ## E2; }; \
struct { detail::_swizzle<2,T, P, V, 0,3,-1,-2> E0 ## E3; }; \
struct { detail::_swizzle<2,T, P, V, 1,0,-1,-2> E1 ## E0; }; \
struct { detail::_swizzle<2,T, P, V, 1,1,-1,-2> E1 ## E1; }; \
struct { detail::_swizzle<2,T, P, V, 1,2,-1,-2> E1 ## E2; }; \
struct { detail::_swizzle<2,T, P, V, 1,3,-1,-2> E1 ## E3; }; \
struct { detail::_swizzle<2,T, P, V, 2,0,-1,-2> E2 ## E0; }; \
struct { detail::_swizzle<2,T, P, V, 2,1,-1,-2> E2 ## E1; }; \
struct { detail::_swizzle<2,T, P, V, 2,2,-1,-2> E2 ## E2; }; \
struct { detail::_swizzle<2,T, P, V, 2,3,-1,-2> E2 ## E3; }; \
struct { detail::_swizzle<2,T, P, V, 3,0,-1,-2> E3 ## E0; }; \
struct { detail::_swizzle<2,T, P, V, 3,1,-1,-2> E3 ## E1; }; \
struct { detail::_swizzle<2,T, P, V, 3,2,-1,-2> E3 ## E2; }; \
struct { detail::_swizzle<2,T, P, V, 3,3,-1,-2> E3 ## E3; };
#define _GLM_SWIZZLE4_3_MEMBERS(T, P, V, E0,E1,E2,E3) \
struct { detail::_swizzle<3, T, P, V, 0,0,0,-1> E0 ## E0 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 0,0,1,-1> E0 ## E0 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 0,0,2,-1> E0 ## E0 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 0,0,3,-1> E0 ## E0 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 0,1,0,-1> E0 ## E1 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 0,1,1,-1> E0 ## E1 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 0,1,2,-1> E0 ## E1 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 0,1,3,-1> E0 ## E1 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 0,2,0,-1> E0 ## E2 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 0,2,1,-1> E0 ## E2 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 0,2,2,-1> E0 ## E2 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 0,2,3,-1> E0 ## E2 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 0,3,0,-1> E0 ## E3 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 0,3,1,-1> E0 ## E3 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 0,3,2,-1> E0 ## E3 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 0,3,3,-1> E0 ## E3 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 1,0,0,-1> E1 ## E0 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 1,0,1,-1> E1 ## E0 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 1,0,2,-1> E1 ## E0 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 1,0,3,-1> E1 ## E0 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 1,1,0,-1> E1 ## E1 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 1,1,1,-1> E1 ## E1 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 1,1,2,-1> E1 ## E1 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 1,1,3,-1> E1 ## E1 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 1,2,0,-1> E1 ## E2 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 1,2,1,-1> E1 ## E2 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 1,2,2,-1> E1 ## E2 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 1,2,3,-1> E1 ## E2 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 1,3,0,-1> E1 ## E3 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 1,3,1,-1> E1 ## E3 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 1,3,2,-1> E1 ## E3 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 1,3,3,-1> E1 ## E3 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 2,0,0,-1> E2 ## E0 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 2,0,1,-1> E2 ## E0 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 2,0,2,-1> E2 ## E0 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 2,0,3,-1> E2 ## E0 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 2,1,0,-1> E2 ## E1 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 2,1,1,-1> E2 ## E1 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 2,1,2,-1> E2 ## E1 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 2,1,3,-1> E2 ## E1 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 2,2,0,-1> E2 ## E2 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 2,2,1,-1> E2 ## E2 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 2,2,2,-1> E2 ## E2 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 2,2,3,-1> E2 ## E2 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 2,3,0,-1> E2 ## E3 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 2,3,1,-1> E2 ## E3 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 2,3,2,-1> E2 ## E3 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 2,3,3,-1> E2 ## E3 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 3,0,0,-1> E3 ## E0 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 3,0,1,-1> E3 ## E0 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 3,0,2,-1> E3 ## E0 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 3,0,3,-1> E3 ## E0 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 3,1,0,-1> E3 ## E1 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 3,1,1,-1> E3 ## E1 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 3,1,2,-1> E3 ## E1 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 3,1,3,-1> E3 ## E1 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 3,2,0,-1> E3 ## E2 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 3,2,1,-1> E3 ## E2 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 3,2,2,-1> E3 ## E2 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 3,2,3,-1> E3 ## E2 ## E3; }; \
struct { detail::_swizzle<3, T, P, V, 3,3,0,-1> E3 ## E3 ## E0; }; \
struct { detail::_swizzle<3, T, P, V, 3,3,1,-1> E3 ## E3 ## E1; }; \
struct { detail::_swizzle<3, T, P, V, 3,3,2,-1> E3 ## E3 ## E2; }; \
struct { detail::_swizzle<3, T, P, V, 3,3,3,-1> E3 ## E3 ## E3; };
#define _GLM_SWIZZLE4_4_MEMBERS(T, P, V, E0,E1,E2,E3) \
struct { detail::_swizzle<4, T, P, V, 0,0,0,0> E0 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,0,1> E0 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,0,2> E0 ## E0 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,0,3> E0 ## E0 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,1,0> E0 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,1,1> E0 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,1,2> E0 ## E0 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,1,3> E0 ## E0 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,2,0> E0 ## E0 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,2,1> E0 ## E0 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,2,2> E0 ## E0 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,2,3> E0 ## E0 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,3,0> E0 ## E0 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,3,1> E0 ## E0 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,3,2> E0 ## E0 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,0,3,3> E0 ## E0 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,0,0> E0 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,0,1> E0 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,0,2> E0 ## E1 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,0,3> E0 ## E1 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,1,0> E0 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,1,1> E0 ## E1 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,1,2> E0 ## E1 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,1,3> E0 ## E1 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,2,0> E0 ## E1 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,2,1> E0 ## E1 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,2,2> E0 ## E1 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,2,3> E0 ## E1 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,3,0> E0 ## E1 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,3,1> E0 ## E1 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,3,2> E0 ## E1 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,1,3,3> E0 ## E1 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,0,0> E0 ## E2 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,0,1> E0 ## E2 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,0,2> E0 ## E2 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,0,3> E0 ## E2 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,1,0> E0 ## E2 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,1,1> E0 ## E2 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,1,2> E0 ## E2 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,1,3> E0 ## E2 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,2,0> E0 ## E2 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,2,1> E0 ## E2 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,2,2> E0 ## E2 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,2,3> E0 ## E2 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,3,0> E0 ## E2 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,3,1> E0 ## E2 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,3,2> E0 ## E2 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,2,3,3> E0 ## E2 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,0,0> E0 ## E3 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,0,1> E0 ## E3 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,0,2> E0 ## E3 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,0,3> E0 ## E3 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,1,0> E0 ## E3 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,1,1> E0 ## E3 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,1,2> E0 ## E3 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,1,3> E0 ## E3 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,2,0> E0 ## E3 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,2,1> E0 ## E3 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,2,2> E0 ## E3 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,2,3> E0 ## E3 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,3,0> E0 ## E3 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,3,1> E0 ## E3 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,3,2> E0 ## E3 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 0,3,3,3> E0 ## E3 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,0,0> E1 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,0,1> E1 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,0,2> E1 ## E0 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,0,3> E1 ## E0 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,1,0> E1 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,1,1> E1 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,1,2> E1 ## E0 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,1,3> E1 ## E0 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,2,0> E1 ## E0 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,2,1> E1 ## E0 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,2,2> E1 ## E0 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,2,3> E1 ## E0 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,3,0> E1 ## E0 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,3,1> E1 ## E0 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,3,2> E1 ## E0 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,0,3,3> E1 ## E0 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,0,0> E1 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,0,1> E1 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,0,2> E1 ## E1 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,0,3> E1 ## E1 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,1,0> E1 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,1,1> E1 ## E1 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,1,2> E1 ## E1 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,1,3> E1 ## E1 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,2,0> E1 ## E1 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,2,1> E1 ## E1 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,2,2> E1 ## E1 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,2,3> E1 ## E1 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,3,0> E1 ## E1 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,3,1> E1 ## E1 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,3,2> E1 ## E1 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,1,3,3> E1 ## E1 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,0,0> E1 ## E2 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,0,1> E1 ## E2 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,0,2> E1 ## E2 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,0,3> E1 ## E2 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,1,0> E1 ## E2 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,1,1> E1 ## E2 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,1,2> E1 ## E2 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,1,3> E1 ## E2 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,2,0> E1 ## E2 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,2,1> E1 ## E2 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,2,2> E1 ## E2 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,2,3> E1 ## E2 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,3,0> E1 ## E2 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,3,1> E1 ## E2 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,3,2> E1 ## E2 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,2,3,3> E1 ## E2 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,0,0> E1 ## E3 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,0,1> E1 ## E3 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,0,2> E1 ## E3 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,0,3> E1 ## E3 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,1,0> E1 ## E3 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,1,1> E1 ## E3 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,1,2> E1 ## E3 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,1,3> E1 ## E3 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,2,0> E1 ## E3 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,2,1> E1 ## E3 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,2,2> E1 ## E3 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,2,3> E1 ## E3 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,3,0> E1 ## E3 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,3,1> E1 ## E3 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,3,2> E1 ## E3 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 1,3,3,3> E1 ## E3 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,0,0> E2 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,0,1> E2 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,0,2> E2 ## E0 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,0,3> E2 ## E0 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,1,0> E2 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,1,1> E2 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,1,2> E2 ## E0 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,1,3> E2 ## E0 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,2,0> E2 ## E0 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,2,1> E2 ## E0 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,2,2> E2 ## E0 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,2,3> E2 ## E0 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,3,0> E2 ## E0 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,3,1> E2 ## E0 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,3,2> E2 ## E0 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,0,3,3> E2 ## E0 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,0,0> E2 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,0,1> E2 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,0,2> E2 ## E1 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,0,3> E2 ## E1 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,1,0> E2 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,1,1> E2 ## E1 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,1,2> E2 ## E1 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,1,3> E2 ## E1 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,2,0> E2 ## E1 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,2,1> E2 ## E1 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,2,2> E2 ## E1 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,2,3> E2 ## E1 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,3,0> E2 ## E1 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,3,1> E2 ## E1 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,3,2> E2 ## E1 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,1,3,3> E2 ## E1 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,0,0> E2 ## E2 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,0,1> E2 ## E2 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,0,2> E2 ## E2 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,0,3> E2 ## E2 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,1,0> E2 ## E2 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,1,1> E2 ## E2 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,1,2> E2 ## E2 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,1,3> E2 ## E2 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,2,0> E2 ## E2 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,2,1> E2 ## E2 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,2,2> E2 ## E2 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,2,3> E2 ## E2 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,3,0> E2 ## E2 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,3,1> E2 ## E2 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,3,2> E2 ## E2 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,2,3,3> E2 ## E2 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,0,0> E2 ## E3 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,0,1> E2 ## E3 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,0,2> E2 ## E3 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,0,3> E2 ## E3 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,1,0> E2 ## E3 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,1,1> E2 ## E3 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,1,2> E2 ## E3 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,1,3> E2 ## E3 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,2,0> E2 ## E3 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,2,1> E2 ## E3 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,2,2> E2 ## E3 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,2,3> E2 ## E3 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,3,0> E2 ## E3 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,3,1> E2 ## E3 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,3,2> E2 ## E3 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 2,3,3,3> E2 ## E3 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,0,0> E3 ## E0 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,0,1> E3 ## E0 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,0,2> E3 ## E0 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,0,3> E3 ## E0 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,1,0> E3 ## E0 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,1,1> E3 ## E0 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,1,2> E3 ## E0 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,1,3> E3 ## E0 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,2,0> E3 ## E0 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,2,1> E3 ## E0 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,2,2> E3 ## E0 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,2,3> E3 ## E0 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,3,0> E3 ## E0 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,3,1> E3 ## E0 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,3,2> E3 ## E0 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,0,3,3> E3 ## E0 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,0,0> E3 ## E1 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,0,1> E3 ## E1 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,0,2> E3 ## E1 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,0,3> E3 ## E1 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,1,0> E3 ## E1 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,1,1> E3 ## E1 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,1,2> E3 ## E1 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,1,3> E3 ## E1 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,2,0> E3 ## E1 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,2,1> E3 ## E1 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,2,2> E3 ## E1 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,2,3> E3 ## E1 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,3,0> E3 ## E1 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,3,1> E3 ## E1 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,3,2> E3 ## E1 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,1,3,3> E3 ## E1 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,0,0> E3 ## E2 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,0,1> E3 ## E2 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,0,2> E3 ## E2 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,0,3> E3 ## E2 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,1,0> E3 ## E2 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,1,1> E3 ## E2 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,1,2> E3 ## E2 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,1,3> E3 ## E2 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,2,0> E3 ## E2 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,2,1> E3 ## E2 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,2,2> E3 ## E2 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,2,3> E3 ## E2 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,3,0> E3 ## E2 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,3,1> E3 ## E2 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,3,2> E3 ## E2 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,2,3,3> E3 ## E2 ## E3 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,0,0> E3 ## E3 ## E0 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,0,1> E3 ## E3 ## E0 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,0,2> E3 ## E3 ## E0 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,0,3> E3 ## E3 ## E0 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,1,0> E3 ## E3 ## E1 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,1,1> E3 ## E3 ## E1 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,1,2> E3 ## E3 ## E1 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,1,3> E3 ## E3 ## E1 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,2,0> E3 ## E3 ## E2 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,2,1> E3 ## E3 ## E2 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,2,2> E3 ## E3 ## E2 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,2,3> E3 ## E3 ## E2 ## E3; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,3,0> E3 ## E3 ## E3 ## E0; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,3,1> E3 ## E3 ## E3 ## E1; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,3,2> E3 ## E3 ## E3 ## E2; }; \
struct { detail::_swizzle<4, T, P, V, 3,3,3,3> E3 ## E3 ## E3 ## E3; };

View file

@ -0,0 +1,696 @@
/// @ref core
/// @file glm/detail/_swizzle_func.hpp
#pragma once
#define GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, CONST, A, B) \
SWIZZLED_TYPE<TMPL_TYPE, PRECISION> A ## B() CONST \
{ \
return SWIZZLED_TYPE<TMPL_TYPE, PRECISION>(this->A, this->B); \
}
#define GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, CONST, A, B, C) \
SWIZZLED_TYPE<TMPL_TYPE, PRECISION> A ## B ## C() CONST \
{ \
return SWIZZLED_TYPE<TMPL_TYPE, PRECISION>(this->A, this->B, this->C); \
}
#define GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, CONST, A, B, C, D) \
SWIZZLED_TYPE<TMPL_TYPE, PRECISION> A ## B ## C ## D() CONST \
{ \
return SWIZZLED_TYPE<TMPL_TYPE, PRECISION>(this->A, this->B, this->C, this->D); \
}
#define GLM_SWIZZLE_GEN_VEC2_ENTRY_DEF(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, CONST, A, B) \
template <typename TMPL_TYPE> \
SWIZZLED_TYPE<TMPL_TYPE> CLASS_TYPE<TMPL_TYPE, PRECISION>::A ## B() CONST \
{ \
return SWIZZLED_TYPE<TMPL_TYPE, PRECISION>(this->A, this->B); \
}
#define GLM_SWIZZLE_GEN_VEC3_ENTRY_DEF(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, CONST, A, B, C) \
template <typename TMPL_TYPE> \
SWIZZLED_TYPE<TMPL_TYPE> CLASS_TYPE<TMPL_TYPE, PRECISION>::A ## B ## C() CONST \
{ \
return SWIZZLED_TYPE<TMPL_TYPE, PRECISION>(this->A, this->B, this->C); \
}
#define GLM_SWIZZLE_GEN_VEC4_ENTRY_DEF(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, CONST, A, B, C, D) \
template <typename TMPL_TYPE> \
SWIZZLED_TYPE<TMPL_TYPE> CLASS_TYPE<TMPL_TYPE, PRECISION>::A ## B ## C ## D() CONST \
{ \
return SWIZZLED_TYPE<TMPL_TYPE, PRECISION>(this->A, this->B, this->C, this->D); \
}
#define GLM_MUTABLE
#define GLM_SWIZZLE_GEN_REF2_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, A, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, B, A)
#define GLM_SWIZZLE_GEN_REF_FROM_VEC2(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE) \
GLM_SWIZZLE_GEN_REF2_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, x, y) \
GLM_SWIZZLE_GEN_REF2_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, r, g) \
GLM_SWIZZLE_GEN_REF2_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, s, t)
//GLM_SWIZZLE_GEN_REF_FROM_VEC2(valType, detail::vec2, detail::ref2)
#define GLM_SWIZZLE_GEN_REF2_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, A, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, A, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, B, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, B, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, C, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, C, B)
#define GLM_SWIZZLE_GEN_REF3_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, A, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, A, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, B, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, B, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, C, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, C, B, A)
#define GLM_SWIZZLE_GEN_REF_FROM_VEC3_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_REF3_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC3_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_REF2_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, A, B, C)
#define GLM_SWIZZLE_GEN_REF_FROM_VEC3(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE) \
GLM_SWIZZLE_GEN_REF_FROM_VEC3_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, x, y, z) \
GLM_SWIZZLE_GEN_REF_FROM_VEC3_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, r, g, b) \
GLM_SWIZZLE_GEN_REF_FROM_VEC3_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, s, t, p)
//GLM_SWIZZLE_GEN_REF_FROM_VEC3(valType, detail::vec3, detail::ref2, detail::ref3)
#define GLM_SWIZZLE_GEN_REF2_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, A, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, A, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, A, D) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, B, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, B, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, B, D) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, C, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, C, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, C, D) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, D, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, D, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, GLM_MUTABLE, D, C)
#define GLM_SWIZZLE_GEN_REF3_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, B, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, C, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, D, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, D, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, A, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, C, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, D, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, D, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, A, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, B, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, D, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, D, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, C, B)
#define GLM_SWIZZLE_GEN_REF4_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, C, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, C, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, D, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, D, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, B, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , A, B, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, C, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, C, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, D, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, D, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, A, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , B, A, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, B, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, B, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, D, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, D, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, A, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , C, A, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, C, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, C, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, A, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, B, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, , D, B, C, A)
#define GLM_SWIZZLE_GEN_REF_FROM_VEC4_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_REF2_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_REF3_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC3_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_REF4_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC4_TYPE, A, B, C, D)
#define GLM_SWIZZLE_GEN_REF_FROM_VEC4(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE) \
GLM_SWIZZLE_GEN_REF_FROM_VEC4_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, x, y, z, w) \
GLM_SWIZZLE_GEN_REF_FROM_VEC4_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, r, g, b, a) \
GLM_SWIZZLE_GEN_REF_FROM_VEC4_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, s, t, p, q)
//GLM_SWIZZLE_GEN_REF_FROM_VEC4(valType, detail::vec4, detail::ref2, detail::ref3, detail::ref4)
#define GLM_SWIZZLE_GEN_VEC2_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B)
#define GLM_SWIZZLE_GEN_VEC3_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B)
#define GLM_SWIZZLE_GEN_VEC4_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, B)
#define GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, A, B) \
GLM_SWIZZLE_GEN_VEC2_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, A, B) \
GLM_SWIZZLE_GEN_VEC3_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC3_TYPE, A, B) \
GLM_SWIZZLE_GEN_VEC4_FROM_VEC2_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC4_TYPE, A, B)
#define GLM_SWIZZLE_GEN_VEC_FROM_VEC2(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, x, y) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, r, g) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC2_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, s, t)
//GLM_SWIZZLE_GEN_VEC_FROM_VEC2(valType, detail::vec2, detail::vec2, detail::vec3, detail::vec4)
#define GLM_SWIZZLE_GEN_VEC2_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C)
#define GLM_SWIZZLE_GEN_VEC3_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C)
#define GLM_SWIZZLE_GEN_VEC4_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C, C)
#define GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_VEC2_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_VEC3_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC3_TYPE, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_FROM_VEC3_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC4_TYPE, A, B, C)
#define GLM_SWIZZLE_GEN_VEC_FROM_VEC3(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, x, y, z) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, r, g, b) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC3_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, s, t, p)
//GLM_SWIZZLE_GEN_VEC_FROM_VEC3(valType, detail::vec3, detail::vec2, detail::vec3, detail::vec4)
#define GLM_SWIZZLE_GEN_VEC2_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C) \
GLM_SWIZZLE_GEN_VEC2_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D)
#define GLM_SWIZZLE_GEN_VEC3_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, D) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, A) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, B) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, C) \
GLM_SWIZZLE_GEN_VEC3_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, D)
#define GLM_SWIZZLE_GEN_VEC4_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, A, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, B, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, C, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, A, D, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, A, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, B, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, C, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, B, D, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, A, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, B, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, C, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, C, D, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, A, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, B, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, C, D, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, A, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, A, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, A, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, A, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, B, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, B, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, B, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, B, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, C, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, C, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, C, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, C, D) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, D, A) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, D, B) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, D, C) \
GLM_SWIZZLE_GEN_VEC4_ENTRY(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_TYPE, const, D, D, D, D)
#define GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC2_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC3_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC3_TYPE, A, B, C, D) \
GLM_SWIZZLE_GEN_VEC4_FROM_VEC4_SWIZZLE(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC4_TYPE, A, B, C, D)
#define GLM_SWIZZLE_GEN_VEC_FROM_VEC4(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, x, y, z, w) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, r, g, b, a) \
GLM_SWIZZLE_GEN_VEC_FROM_VEC4_COMP(TMPL_TYPE, PRECISION, CLASS_TYPE, SWIZZLED_VEC2_TYPE, SWIZZLED_VEC3_TYPE, SWIZZLED_VEC4_TYPE, s, t, p, q)
//GLM_SWIZZLE_GEN_VEC_FROM_VEC4(valType, detail::vec4, detail::vec2, detail::vec3, detail::vec4)

View file

@ -0,0 +1,131 @@
/// @ref core
/// @file glm/detail/_vectorize.hpp
#pragma once
#include "type_vec1.hpp"
#include "type_vec2.hpp"
#include "type_vec3.hpp"
#include "type_vec4.hpp"
namespace glm{
namespace detail
{
template <typename R, typename T, precision P, template <typename, precision> class vecType>
struct functor1{};
template <typename R, typename T, precision P>
struct functor1<R, T, P, tvec1>
{
GLM_FUNC_QUALIFIER static tvec1<R, P> call(R (*Func) (T x), tvec1<T, P> const & v)
{
return tvec1<R, P>(Func(v.x));
}
};
template <typename R, typename T, precision P>
struct functor1<R, T, P, tvec2>
{
GLM_FUNC_QUALIFIER static tvec2<R, P> call(R (*Func) (T x), tvec2<T, P> const & v)
{
return tvec2<R, P>(Func(v.x), Func(v.y));
}
};
template <typename R, typename T, precision P>
struct functor1<R, T, P, tvec3>
{
GLM_FUNC_QUALIFIER static tvec3<R, P> call(R (*Func) (T x), tvec3<T, P> const & v)
{
return tvec3<R, P>(Func(v.x), Func(v.y), Func(v.z));
}
};
template <typename R, typename T, precision P>
struct functor1<R, T, P, tvec4>
{
GLM_FUNC_QUALIFIER static tvec4<R, P> call(R (*Func) (T x), tvec4<T, P> const & v)
{
return tvec4<R, P>(Func(v.x), Func(v.y), Func(v.z), Func(v.w));
}
};
template <typename T, precision P, template <typename, precision> class vecType>
struct functor2{};
template <typename T, precision P>
struct functor2<T, P, tvec1>
{
GLM_FUNC_QUALIFIER static tvec1<T, P> call(T (*Func) (T x, T y), tvec1<T, P> const & a, tvec1<T, P> const & b)
{
return tvec1<T, P>(Func(a.x, b.x));
}
};
template <typename T, precision P>
struct functor2<T, P, tvec2>
{
GLM_FUNC_QUALIFIER static tvec2<T, P> call(T (*Func) (T x, T y), tvec2<T, P> const & a, tvec2<T, P> const & b)
{
return tvec2<T, P>(Func(a.x, b.x), Func(a.y, b.y));
}
};
template <typename T, precision P>
struct functor2<T, P, tvec3>
{
GLM_FUNC_QUALIFIER static tvec3<T, P> call(T (*Func) (T x, T y), tvec3<T, P> const & a, tvec3<T, P> const & b)
{
return tvec3<T, P>(Func(a.x, b.x), Func(a.y, b.y), Func(a.z, b.z));
}
};
template <typename T, precision P>
struct functor2<T, P, tvec4>
{
GLM_FUNC_QUALIFIER static tvec4<T, P> call(T (*Func) (T x, T y), tvec4<T, P> const & a, tvec4<T, P> const & b)
{
return tvec4<T, P>(Func(a.x, b.x), Func(a.y, b.y), Func(a.z, b.z), Func(a.w, b.w));
}
};
template <typename T, precision P, template <typename, precision> class vecType>
struct functor2_vec_sca{};
template <typename T, precision P>
struct functor2_vec_sca<T, P, tvec1>
{
GLM_FUNC_QUALIFIER static tvec1<T, P> call(T (*Func) (T x, T y), tvec1<T, P> const & a, T b)
{
return tvec1<T, P>(Func(a.x, b));
}
};
template <typename T, precision P>
struct functor2_vec_sca<T, P, tvec2>
{
GLM_FUNC_QUALIFIER static tvec2<T, P> call(T (*Func) (T x, T y), tvec2<T, P> const & a, T b)
{
return tvec2<T, P>(Func(a.x, b), Func(a.y, b));
}
};
template <typename T, precision P>
struct functor2_vec_sca<T, P, tvec3>
{
GLM_FUNC_QUALIFIER static tvec3<T, P> call(T (*Func) (T x, T y), tvec3<T, P> const & a, T b)
{
return tvec3<T, P>(Func(a.x, b), Func(a.y, b), Func(a.z, b));
}
};
template <typename T, precision P>
struct functor2_vec_sca<T, P, tvec4>
{
GLM_FUNC_QUALIFIER static tvec4<T, P> call(T (*Func) (T x, T y), tvec4<T, P> const & a, T b)
{
return tvec4<T, P>(Func(a.x, b), Func(a.y, b), Func(a.z, b), Func(a.w, b));
}
};
}//namespace detail
}//namespace glm

View file

@ -0,0 +1,207 @@
/// @ref core
/// @file glm/core/dummy.cpp
///
/// GLM is a header only library. There is nothing to compile.
/// dummy.cpp exist only a wordaround for CMake file.
/*
#define GLM_MESSAGES
#include <glm/glm.hpp>
#include <glm/ext.hpp>
#include <limits>
struct material
{
glm::vec4 emission; // Ecm
glm::vec4 ambient; // Acm
glm::vec4 diffuse; // Dcm
glm::vec4 specular; // Scm
float shininess; // Srm
};
struct light
{
glm::vec4 ambient; // Acli
glm::vec4 diffuse; // Dcli
glm::vec4 specular; // Scli
glm::vec4 position; // Ppli
glm::vec4 halfVector; // Derived: Hi
glm::vec3 spotDirection; // Sdli
float spotExponent; // Srli
float spotCutoff; // Crli
// (range: [0.0,90.0], 180.0)
float spotCosCutoff; // Derived: cos(Crli)
// (range: [1.0,0.0],-1.0)
float constantAttenuation; // K0
float linearAttenuation; // K1
float quadraticAttenuation;// K2
};
// Sample 1
#include <glm/vec3.hpp>// glm::vec3
#include <glm/geometric.hpp>// glm::cross, glm::normalize
glm::vec3 computeNormal
(
glm::vec3 const & a,
glm::vec3 const & b,
glm::vec3 const & c
)
{
return glm::normalize(glm::cross(c - a, b - a));
}
typedef unsigned int GLuint;
#define GL_FALSE 0
void glUniformMatrix4fv(GLuint, int, int, float*){}
// Sample 2
#include <glm/vec3.hpp> // glm::vec3
#include <glm/vec4.hpp> // glm::vec4, glm::ivec4
#include <glm/mat4x4.hpp> // glm::mat4
#include <glm/gtc/matrix_transform.hpp> // glm::translate, glm::rotate, glm::scale, glm::perspective
#include <glm/gtc/type_ptr.hpp> // glm::value_ptr
void func(GLuint LocationMVP, float Translate, glm::vec2 const & Rotate)
{
glm::mat4 Projection = glm::perspective(45.0f, 4.0f / 3.0f, 0.1f, 100.f);
glm::mat4 ViewTranslate = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, -Translate));
glm::mat4 ViewRotateX = glm::rotate(ViewTranslate, Rotate.y, glm::vec3(-1.0f, 0.0f, 0.0f));
glm::mat4 View = glm::rotate(ViewRotateX, Rotate.x, glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 Model = glm::scale(glm::mat4(1.0f), glm::vec3(0.5f));
glm::mat4 MVP = Projection * View * Model;
glUniformMatrix4fv(LocationMVP, 1, GL_FALSE, glm::value_ptr(MVP));
}
// Sample 3
#include <glm/vec2.hpp>// glm::vec2
#include <glm/packing.hpp>// glm::packUnorm2x16
#include <glm/integer.hpp>// glm::uint
#include <glm/gtc/type_precision.hpp>// glm::i8vec2, glm::i32vec2
std::size_t const VertexCount = 4;
// Float quad geometry
std::size_t const PositionSizeF32 = VertexCount * sizeof(glm::vec2);
glm::vec2 const PositionDataF32[VertexCount] =
{
glm::vec2(-1.0f,-1.0f),
glm::vec2( 1.0f,-1.0f),
glm::vec2( 1.0f, 1.0f),
glm::vec2(-1.0f, 1.0f)
};
// Half-float quad geometry
std::size_t const PositionSizeF16 = VertexCount * sizeof(glm::uint);
glm::uint const PositionDataF16[VertexCount] =
{
glm::uint(glm::packUnorm2x16(glm::vec2(-1.0f, -1.0f))),
glm::uint(glm::packUnorm2x16(glm::vec2( 1.0f, -1.0f))),
glm::uint(glm::packUnorm2x16(glm::vec2( 1.0f, 1.0f))),
glm::uint(glm::packUnorm2x16(glm::vec2(-1.0f, 1.0f)))
};
// 8 bits signed integer quad geometry
std::size_t const PositionSizeI8 = VertexCount * sizeof(glm::i8vec2);
glm::i8vec2 const PositionDataI8[VertexCount] =
{
glm::i8vec2(-1,-1),
glm::i8vec2( 1,-1),
glm::i8vec2( 1, 1),
glm::i8vec2(-1, 1)
};
// 32 bits signed integer quad geometry
std::size_t const PositionSizeI32 = VertexCount * sizeof(glm::i32vec2);
glm::i32vec2 const PositionDataI32[VertexCount] =
{
glm::i32vec2 (-1,-1),
glm::i32vec2 ( 1,-1),
glm::i32vec2 ( 1, 1),
glm::i32vec2 (-1, 1)
};
struct intersection
{
glm::vec4 position;
glm::vec3 normal;
};
*/
/*
// Sample 4
#include <glm/vec3.hpp>// glm::vec3
#include <glm/geometric.hpp>// glm::normalize, glm::dot, glm::reflect
#include <glm/exponential.hpp>// glm::pow
#include <glm/gtc/random.hpp>// glm::vecRand3
glm::vec3 lighting
(
intersection const & Intersection,
material const & Material,
light const & Light,
glm::vec3 const & View
)
{
glm::vec3 Color(0.0f);
glm::vec3 LightVertor(glm::normalize(
Light.position - Intersection.position +
glm::vecRand3(0.0f, Light.inaccuracy));
if(!shadow(Intersection.position, Light.position, LightVertor))
{
float Diffuse = glm::dot(Intersection.normal, LightVector);
if(Diffuse <= 0.0f)
return Color;
if(Material.isDiffuse())
Color += Light.color() * Material.diffuse * Diffuse;
if(Material.isSpecular())
{
glm::vec3 Reflect(glm::reflect(
glm::normalize(-LightVector),
glm::normalize(Intersection.normal)));
float Dot = glm::dot(Reflect, View);
float Base = Dot > 0.0f ? Dot : 0.0f;
float Specular = glm::pow(Base, Material.exponent);
Color += Material.specular * Specular;
}
}
return Color;
}
*/
/*
template <typename T, glm::precision P, template<typename, glm::precision> class vecType>
T normalizeDotA(vecType<T, P> const & x, vecType<T, P> const & y)
{
return glm::dot(x, y) * glm::inversesqrt(glm::dot(x, x) * glm::dot(y, y));
}
#define GLM_TEMPLATE_GENTYPE typename T, glm::precision P, template<typename, glm::precision> class
template <GLM_TEMPLATE_GENTYPE vecType>
T normalizeDotB(vecType<T, P> const & x, vecType<T, P> const & y)
{
return glm::dot(x, y) * glm::inversesqrt(glm::dot(x, x) * glm::dot(y, y));
}
template <typename vecType>
typename vecType::value_type normalizeDotC(vecType const & a, vecType const & b)
{
return glm::dot(a, b) * glm::inversesqrt(glm::dot(a, a) * glm::dot(b, b));
}
*/
int main()
{
/*
glm::vec1 o(1);
glm::vec2 a(1);
glm::vec3 b(1);
glm::vec4 c(1);
glm::quat q;
glm::dualquat p;
glm::mat4 m(1);
float a0 = normalizeDotA(a, a);
float b0 = normalizeDotB(b, b);
float c0 = normalizeDotC(c, c);
*/
return 0;
}

View file

@ -0,0 +1,427 @@
/// @ref core
/// @file glm/detail/func_common.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
///
/// @defgroup core_func_common Common functions
/// @ingroup core
///
/// These all operate component-wise. The description is per component.
#pragma once
#include "setup.hpp"
#include "precision.hpp"
#include "type_int.hpp"
#include "_fixes.hpp"
namespace glm
{
/// @addtogroup core_func_common
/// @{
/// Returns x if x >= 0; otherwise, it returns -x.
///
/// @tparam genType floating-point or signed integer; scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/abs.xml">GLSL abs man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType abs(genType x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> abs(vecType<T, P> const & x);
/// Returns 1.0 if x > 0, 0.0 if x == 0, or -1.0 if x < 0.
///
/// @tparam genType Floating-point or signed integer; scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/sign.xml">GLSL sign man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> sign(vecType<T, P> const & x);
/// Returns a value equal to the nearest integer that is less then or equal to x.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/floor.xml">GLSL floor man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> floor(vecType<T, P> const & x);
/// Returns a value equal to the nearest integer to x
/// whose absolute value is not larger than the absolute value of x.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/trunc.xml">GLSL trunc man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> trunc(vecType<T, P> const & x);
/// Returns a value equal to the nearest integer to x.
/// The fraction 0.5 will round in a direction chosen by the
/// implementation, presumably the direction that is fastest.
/// This includes the possibility that round(x) returns the
/// same value as roundEven(x) for all values of x.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/round.xml">GLSL round man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> round(vecType<T, P> const & x);
/// Returns a value equal to the nearest integer to x.
/// A fractional part of 0.5 will round toward the nearest even
/// integer. (Both 3.5 and 4.5 for x will return 4.0.)
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/roundEven.xml">GLSL roundEven man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
/// @see <a href="http://developer.amd.com/documentation/articles/pages/New-Round-to-Even-Technique.aspx">New round to even technique</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> roundEven(vecType<T, P> const & x);
/// Returns a value equal to the nearest integer
/// that is greater than or equal to x.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/ceil.xml">GLSL ceil man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> ceil(vecType<T, P> const & x);
/// Return x - floor(x).
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/fract.xml">GLSL fract man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType fract(genType x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> fract(vecType<T, P> const & x);
/// Modulus. Returns x - y * floor(x / y)
/// for each component in x using the floating point value y.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mod.xml">GLSL mod man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType mod(genType x, genType y);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, T y);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> mod(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns the fractional part of x and sets i to the integer
/// part (as a whole number floating point value). Both the
/// return value and the output parameter will have the same
/// sign as x.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/modf.xml">GLSL modf man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType modf(genType x, genType & i);
/// Returns y if y < x; otherwise, it returns x.
///
/// @tparam genType Floating-point or integer; scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/min.xml">GLSL min man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType min(genType x, genType y);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> min(vecType<T, P> const & x, T y);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> min(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns y if x < y; otherwise, it returns x.
///
/// @tparam genType Floating-point or integer; scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/max.xml">GLSL max man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType max(genType x, genType y);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> max(vecType<T, P> const & x, T y);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> max(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns min(max(x, minVal), maxVal) for each component in x
/// using the floating-point values minVal and maxVal.
///
/// @tparam genType Floating-point or integer; scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/clamp.xml">GLSL clamp man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType clamp(genType x, genType minVal, genType maxVal);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> clamp(vecType<T, P> const & x, T minVal, T maxVal);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> clamp(vecType<T, P> const & x, vecType<T, P> const & minVal, vecType<T, P> const & maxVal);
/// If genTypeU is a floating scalar or vector:
/// Returns x * (1.0 - a) + y * a, i.e., the linear blend of
/// x and y using the floating-point value a.
/// The value for a is not restricted to the range [0, 1].
///
/// If genTypeU is a boolean scalar or vector:
/// Selects which vector each returned component comes
/// from. For a component of <a> that is false, the
/// corresponding component of x is returned. For a
/// component of a that is true, the corresponding
/// component of y is returned. Components of x and y that
/// are not selected are allowed to be invalid floating point
/// values and will have no effect on the results. Thus, this
/// provides different functionality than
/// genType mix(genType x, genType y, genType(a))
/// where a is a Boolean vector.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/mix.xml">GLSL mix man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
///
/// @param[in] x Value to interpolate.
/// @param[in] y Value to interpolate.
/// @param[in] a Interpolant.
///
/// @tparam genTypeT Floating point scalar or vector.
/// @tparam genTypeU Floating point or boolean scalar or vector. It can't be a vector if it is the length of genTypeT.
///
/// @code
/// #include <glm/glm.hpp>
/// ...
/// float a;
/// bool b;
/// glm::dvec3 e;
/// glm::dvec3 f;
/// glm::vec4 g;
/// glm::vec4 h;
/// ...
/// glm::vec4 r = glm::mix(g, h, a); // Interpolate with a floating-point scalar two vectors.
/// glm::vec4 s = glm::mix(g, h, b); // Teturns g or h;
/// glm::dvec3 t = glm::mix(e, f, a); // Types of the third parameter is not required to match with the first and the second.
/// glm::vec4 u = glm::mix(g, h, r); // Interpolations can be perform per component with a vector for the last parameter.
/// @endcode
template <typename T, typename U, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> mix(vecType<T, P> const & x, vecType<T, P> const & y, vecType<U, P> const & a);
template <typename T, typename U, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> mix(vecType<T, P> const & x, vecType<T, P> const & y, U a);
template <typename genTypeT, typename genTypeU>
GLM_FUNC_DECL genTypeT mix(genTypeT x, genTypeT y, genTypeU a);
/// Returns 0.0 if x < edge, otherwise it returns 1.0 for each component of a genType.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/step.xml">GLSL step man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType step(genType edge, genType x);
/// Returns 0.0 if x < edge, otherwise it returns 1.0.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/step.xml">GLSL step man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <template <typename, precision> class vecType, typename T, precision P>
GLM_FUNC_DECL vecType<T, P> step(T edge, vecType<T, P> const & x);
/// Returns 0.0 if x < edge, otherwise it returns 1.0.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/step.xml">GLSL step man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <template <typename, precision> class vecType, typename T, precision P>
GLM_FUNC_DECL vecType<T, P> step(vecType<T, P> const & edge, vecType<T, P> const & x);
/// Returns 0.0 if x <= edge0 and 1.0 if x >= edge1 and
/// performs smooth Hermite interpolation between 0 and 1
/// when edge0 < x < edge1. This is useful in cases where
/// you would want a threshold function with a smooth
/// transition. This is equivalent to:
/// genType t;
/// t = clamp ((x - edge0) / (edge1 - edge0), 0, 1);
/// return t * t * (3 - 2 * t);
/// Results are undefined if edge0 >= edge1.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/smoothstep.xml">GLSL smoothstep man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType smoothstep(genType edge0, genType edge1, genType x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> smoothstep(T edge0, T edge1, vecType<T, P> const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> smoothstep(vecType<T, P> const & edge0, vecType<T, P> const & edge1, vecType<T, P> const & x);
/// Returns true if x holds a NaN (not a number)
/// representation in the underlying implementation's set of
/// floating point representations. Returns false otherwise,
/// including for implementations with no NaN
/// representations.
///
/// /!\ When using compiler fast math, this function may fail.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/isnan.xml">GLSL isnan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> isnan(vecType<T, P> const & x);
/// Returns true if x holds a positive infinity or negative
/// infinity representation in the underlying implementation's
/// set of floating point representations. Returns false
/// otherwise, including for implementations with no infinity
/// representations.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/isinf.xml">GLSL isinf man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> isinf(vecType<T, P> const & x);
/// Returns a signed integer value representing
/// the encoding of a floating-point value. The floating-point
/// value's bit-level representation is preserved.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/floatBitsToInt.xml">GLSL floatBitsToInt man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
GLM_FUNC_DECL int floatBitsToInt(float const & v);
/// Returns a signed integer value representing
/// the encoding of a floating-point value. The floatingpoint
/// value's bit-level representation is preserved.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/floatBitsToInt.xml">GLSL floatBitsToInt man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <template <typename, precision> class vecType, precision P>
GLM_FUNC_DECL vecType<int, P> floatBitsToInt(vecType<float, P> const & v);
/// Returns a unsigned integer value representing
/// the encoding of a floating-point value. The floatingpoint
/// value's bit-level representation is preserved.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/floatBitsToUint.xml">GLSL floatBitsToUint man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
GLM_FUNC_DECL uint floatBitsToUint(float const & v);
/// Returns a unsigned integer value representing
/// the encoding of a floating-point value. The floatingpoint
/// value's bit-level representation is preserved.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/floatBitsToUint.xml">GLSL floatBitsToUint man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <template <typename, precision> class vecType, precision P>
GLM_FUNC_DECL vecType<uint, P> floatBitsToUint(vecType<float, P> const & v);
/// Returns a floating-point value corresponding to a signed
/// integer encoding of a floating-point value.
/// If an inf or NaN is passed in, it will not signal, and the
/// resulting floating point value is unspecified. Otherwise,
/// the bit-level representation is preserved.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/intBitsToFloat.xml">GLSL intBitsToFloat man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
GLM_FUNC_DECL float intBitsToFloat(int const & v);
/// Returns a floating-point value corresponding to a signed
/// integer encoding of a floating-point value.
/// If an inf or NaN is passed in, it will not signal, and the
/// resulting floating point value is unspecified. Otherwise,
/// the bit-level representation is preserved.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/intBitsToFloat.xml">GLSL intBitsToFloat man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <template <typename, precision> class vecType, precision P>
GLM_FUNC_DECL vecType<float, P> intBitsToFloat(vecType<int, P> const & v);
/// Returns a floating-point value corresponding to a
/// unsigned integer encoding of a floating-point value.
/// If an inf or NaN is passed in, it will not signal, and the
/// resulting floating point value is unspecified. Otherwise,
/// the bit-level representation is preserved.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/uintBitsToFloat.xml">GLSL uintBitsToFloat man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
GLM_FUNC_DECL float uintBitsToFloat(uint const & v);
/// Returns a floating-point value corresponding to a
/// unsigned integer encoding of a floating-point value.
/// If an inf or NaN is passed in, it will not signal, and the
/// resulting floating point value is unspecified. Otherwise,
/// the bit-level representation is preserved.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/uintBitsToFloat.xml">GLSL uintBitsToFloat man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <template <typename, precision> class vecType, precision P>
GLM_FUNC_DECL vecType<float, P> uintBitsToFloat(vecType<uint, P> const & v);
/// Computes and returns a * b + c.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/fma.xml">GLSL fma man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType>
GLM_FUNC_DECL genType fma(genType const & a, genType const & b, genType const & c);
/// Splits x into a floating-point significand in the range
/// [0.5, 1.0) and an integral exponent of two, such that:
/// x = significand * exp(2, exponent)
///
/// The significand is returned by the function and the
/// exponent is returned in the parameter exp. For a
/// floating-point value of zero, the significant and exponent
/// are both zero. For a floating-point value that is an
/// infinity or is not a number, the results are undefined.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/frexp.xml">GLSL frexp man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType, typename genIType>
GLM_FUNC_DECL genType frexp(genType const & x, genIType & exp);
/// Builds a floating-point number from x and the
/// corresponding integral exponent of two in exp, returning:
/// significand * exp(2, exponent)
///
/// If this product is too large to be represented in the
/// floating-point type, the result is undefined.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/ldexp.xml">GLSL ldexp man page</a>;
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.3 Common Functions</a>
template <typename genType, typename genIType>
GLM_FUNC_DECL genType ldexp(genType const & x, genIType const & exp);
/// @}
}//namespace glm
#include "func_common.inl"

View file

@ -0,0 +1,849 @@
/// @ref core
/// @file glm/detail/func_common.inl
#include "func_vector_relational.hpp"
#include "type_vec2.hpp"
#include "type_vec3.hpp"
#include "type_vec4.hpp"
#include "_vectorize.hpp"
#include <limits>
namespace glm
{
// min
template <typename genType>
GLM_FUNC_QUALIFIER genType min(genType x, genType y)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || std::numeric_limits<genType>::is_integer || GLM_UNRESTRICTED_GENTYPE, "'min' only accept floating-point or integer inputs");
return x < y ? x : y;
}
// max
template <typename genType>
GLM_FUNC_QUALIFIER genType max(genType x, genType y)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || std::numeric_limits<genType>::is_integer || GLM_UNRESTRICTED_GENTYPE, "'max' only accept floating-point or integer inputs");
return x > y ? x : y;
}
// abs
template <>
GLM_FUNC_QUALIFIER int32 abs(int32 x)
{
int32 const y = x >> 31;
return (x ^ y) - y;
}
// round
# if GLM_HAS_CXX11_STL
using ::std::round;
# else
template <typename genType>
GLM_FUNC_QUALIFIER genType round(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'round' only accept floating-point inputs");
return x < static_cast<genType>(0) ? static_cast<genType>(int(x - static_cast<genType>(0.5))) : static_cast<genType>(int(x + static_cast<genType>(0.5)));
}
# endif
// trunc
# if GLM_HAS_CXX11_STL
using ::std::trunc;
# else
template <typename genType>
GLM_FUNC_QUALIFIER genType trunc(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'trunc' only accept floating-point inputs");
return x < static_cast<genType>(0) ? -std::floor(-x) : std::floor(x);
}
# endif
}//namespace glm
namespace glm{
namespace detail
{
template <typename genFIType, bool /*signed*/>
struct compute_abs
{};
template <typename genFIType>
struct compute_abs<genFIType, true>
{
GLM_FUNC_QUALIFIER static genFIType call(genFIType x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<genFIType>::is_iec559 || std::numeric_limits<genFIType>::is_signed || GLM_UNRESTRICTED_GENTYPE,
"'abs' only accept floating-point and integer scalar or vector inputs");
return x >= genFIType(0) ? x : -x;
// TODO, perf comp with: *(((int *) &x) + 1) &= 0x7fffffff;
}
};
#if GLM_COMPILER & GLM_COMPILER_CUDA
template <>
struct compute_abs<float, true>
{
GLM_FUNC_QUALIFIER static float call(float x)
{
return fabsf(x);
}
};
#endif
template <typename genFIType>
struct compute_abs<genFIType, false>
{
GLM_FUNC_QUALIFIER static genFIType call(genFIType x)
{
GLM_STATIC_ASSERT(
(!std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer) || GLM_UNRESTRICTED_GENTYPE,
"'abs' only accept floating-point and integer scalar or vector inputs");
return x;
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_abs_vector
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(abs, x);
}
};
template <typename T, typename U, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_mix_vector
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, vecType<T, P> const & y, vecType<U, P> const & a)
{
GLM_STATIC_ASSERT(std::numeric_limits<U>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'mix' only accept floating-point inputs for the interpolator a");
return vecType<T, P>(vecType<U, P>(x) + a * vecType<U, P>(y - x));
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_mix_vector<T, bool, P, vecType, Aligned>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, vecType<T, P> const & y, vecType<bool, P> const & a)
{
vecType<T, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = a[i] ? y[i] : x[i];
return Result;
}
};
template <typename T, typename U, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_mix_scalar
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, vecType<T, P> const & y, U const & a)
{
GLM_STATIC_ASSERT(std::numeric_limits<U>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'mix' only accept floating-point inputs for the interpolator a");
return vecType<T, P>(vecType<U, P>(x) + a * vecType<U, P>(y - x));
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_mix_scalar<T, bool, P, vecType, Aligned>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, vecType<T, P> const & y, bool const & a)
{
return a ? y : x;
}
};
template <typename T, typename U>
struct compute_mix
{
GLM_FUNC_QUALIFIER static T call(T const & x, T const & y, U const & a)
{
GLM_STATIC_ASSERT(std::numeric_limits<U>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'mix' only accept floating-point inputs for the interpolator a");
return static_cast<T>(static_cast<U>(x) + a * static_cast<U>(y - x));
}
};
template <typename T>
struct compute_mix<T, bool>
{
GLM_FUNC_QUALIFIER static T call(T const & x, T const & y, bool const & a)
{
return a ? y : x;
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool isFloat, bool Aligned>
struct compute_sign
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return vecType<T, P>(glm::lessThan(vecType<T, P>(0), x)) - vecType<T, P>(glm::lessThan(x, vecType<T, P>(0)));
}
};
# if GLM_ARCH == GLM_ARCH_X86
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_sign<T, P, vecType, false, Aligned>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
T const Shift(static_cast<T>(sizeof(T) * 8 - 1));
vecType<T, P> const y(vecType<typename make_unsigned<T>::type, P>(-x) >> typename make_unsigned<T>::type(Shift));
return (x >> Shift) | y;
}
};
# endif
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_floor
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(std::floor, x);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_ceil
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(std::ceil, x);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_fract
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return x - floor(x);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_trunc
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(trunc, x);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_round
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(round, x);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_mod
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & a, vecType<T, P> const & b)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'mod' only accept floating-point inputs. Include <glm/gtc/integer.hpp> for integer inputs.");
return a - b * floor(a / b);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_min_vector
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, vecType<T, P> const & y)
{
return detail::functor2<T, P, vecType>::call(min, x, y);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_max_vector
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, vecType<T, P> const & y)
{
return detail::functor2<T, P, vecType>::call(max, x, y);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_clamp_vector
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, vecType<T, P> const & minVal, vecType<T, P> const & maxVal)
{
return min(max(x, minVal), maxVal);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_step_vector
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & edge, vecType<T, P> const & x)
{
return mix(vecType<T, P>(1), vecType<T, P>(0), glm::lessThan(x, edge));
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_smoothstep_vector
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & edge0, vecType<T, P> const & edge1, vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'step' only accept floating-point inputs");
vecType<T, P> const tmp(clamp((x - edge0) / (edge1 - edge0), static_cast<T>(0), static_cast<T>(1)));
return tmp * tmp * (static_cast<T>(3) - static_cast<T>(2) * tmp);
}
};
}//namespace detail
template <typename genFIType>
GLM_FUNC_QUALIFIER genFIType abs(genFIType x)
{
return detail::compute_abs<genFIType, std::numeric_limits<genFIType>::is_signed>::call(x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> abs(vecType<T, P> const & x)
{
return detail::compute_abs_vector<T, P, vecType, detail::is_aligned<P>::value>::call(x);
}
// sign
// fast and works for any type
template <typename genFIType>
GLM_FUNC_QUALIFIER genFIType sign(genFIType x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<genFIType>::is_iec559 || (std::numeric_limits<genFIType>::is_signed && std::numeric_limits<genFIType>::is_integer),
"'sign' only accept signed inputs");
return detail::compute_sign<genFIType, defaultp, tvec1, std::numeric_limits<genFIType>::is_iec559, highp>::call(tvec1<genFIType>(x)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sign(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(
std::numeric_limits<T>::is_iec559 || (std::numeric_limits<T>::is_signed && std::numeric_limits<T>::is_integer),
"'sign' only accept signed inputs");
return detail::compute_sign<T, P, vecType, std::numeric_limits<T>::is_iec559, detail::is_aligned<P>::value>::call(x);
}
// floor
using ::std::floor;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> floor(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'floor' only accept floating-point inputs.");
return detail::compute_floor<T, P, vecType, detail::is_aligned<P>::value>::call(x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> trunc(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'trunc' only accept floating-point inputs");
return detail::compute_trunc<T, P, vecType, detail::is_aligned<P>::value>::call(x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> round(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'round' only accept floating-point inputs");
return detail::compute_round<T, P, vecType, detail::is_aligned<P>::value>::call(x);
}
/*
// roundEven
template <typename genType>
GLM_FUNC_QUALIFIER genType roundEven(genType const& x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'roundEven' only accept floating-point inputs");
return genType(int(x + genType(int(x) % 2)));
}
*/
// roundEven
template <typename genType>
GLM_FUNC_QUALIFIER genType roundEven(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'roundEven' only accept floating-point inputs");
int Integer = static_cast<int>(x);
genType IntegerPart = static_cast<genType>(Integer);
genType FractionalPart = fract(x);
if(FractionalPart > static_cast<genType>(0.5) || FractionalPart < static_cast<genType>(0.5))
{
return round(x);
}
else if((Integer % 2) == 0)
{
return IntegerPart;
}
else if(x <= static_cast<genType>(0)) // Work around...
{
return IntegerPart - static_cast<genType>(1);
}
else
{
return IntegerPart + static_cast<genType>(1);
}
//else // Bug on MinGW 4.5.2
//{
// return mix(IntegerPart + genType(-1), IntegerPart + genType(1), x <= genType(0));
//}
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> roundEven(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'roundEven' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(roundEven, x);
}
// ceil
using ::std::ceil;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> ceil(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'ceil' only accept floating-point inputs");
return detail::compute_ceil<T, P, vecType, detail::is_aligned<P>::value>::call(x);
}
// fract
template <typename genType>
GLM_FUNC_QUALIFIER genType fract(genType x)
{
return fract(tvec1<genType>(x)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> fract(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'fract' only accept floating-point inputs");
return detail::compute_fract<T, P, vecType, detail::is_aligned<P>::value>::call(x);
}
// mod
template <typename genType>
GLM_FUNC_QUALIFIER genType mod(genType x, genType y)
{
# if GLM_COMPILER & GLM_COMPILER_CUDA
// Another Cuda compiler bug https://github.com/g-truc/glm/issues/530
tvec1<genType, defaultp> Result(mod(tvec1<genType, defaultp>(x), y));
return Result.x;
# else
return mod(tvec1<genType, defaultp>(x), y).x;
# endif
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> mod(vecType<T, P> const & x, T y)
{
return detail::compute_mod<T, P, vecType, detail::is_aligned<P>::value>::call(x, vecType<T, P>(y));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> mod(vecType<T, P> const & x, vecType<T, P> const & y)
{
return detail::compute_mod<T, P, vecType, detail::is_aligned<P>::value>::call(x, y);
}
// modf
template <typename genType>
GLM_FUNC_QUALIFIER genType modf(genType x, genType & i)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'modf' only accept floating-point inputs");
return std::modf(x, &i);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec1<T, P> modf(tvec1<T, P> const & x, tvec1<T, P> & i)
{
return tvec1<T, P>(
modf(x.x, i.x));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec2<T, P> modf(tvec2<T, P> const & x, tvec2<T, P> & i)
{
return tvec2<T, P>(
modf(x.x, i.x),
modf(x.y, i.y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> modf(tvec3<T, P> const & x, tvec3<T, P> & i)
{
return tvec3<T, P>(
modf(x.x, i.x),
modf(x.y, i.y),
modf(x.z, i.z));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> modf(tvec4<T, P> const & x, tvec4<T, P> & i)
{
return tvec4<T, P>(
modf(x.x, i.x),
modf(x.y, i.y),
modf(x.z, i.z),
modf(x.w, i.w));
}
//// Only valid if (INT_MIN <= x-y <= INT_MAX)
//// min(x,y)
//r = y + ((x - y) & ((x - y) >> (sizeof(int) *
//CHAR_BIT - 1)));
//// max(x,y)
//r = x - ((x - y) & ((x - y) >> (sizeof(int) *
//CHAR_BIT - 1)));
// min
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> min(vecType<T, P> const & a, T b)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'min' only accept floating-point inputs for the interpolator a");
return detail::compute_min_vector<T, P, vecType, detail::is_aligned<P>::value>::call(a, vecType<T, P>(b));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> min(vecType<T, P> const & a, vecType<T, P> const & b)
{
return detail::compute_min_vector<T, P, vecType, detail::is_aligned<P>::value>::call(a, b);
}
// max
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> max(vecType<T, P> const & a, T b)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'max' only accept floating-point inputs for the interpolator a");
return detail::compute_max_vector<T, P, vecType, detail::is_aligned<P>::value>::call(a, vecType<T, P>(b));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> max(vecType<T, P> const & a, vecType<T, P> const & b)
{
return detail::compute_max_vector<T, P, vecType, detail::is_aligned<P>::value>::call(a, b);
}
// clamp
template <typename genType>
GLM_FUNC_QUALIFIER genType clamp(genType x, genType minVal, genType maxVal)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || std::numeric_limits<genType>::is_integer || GLM_UNRESTRICTED_GENTYPE, "'clamp' only accept floating-point or integer inputs");
return min(max(x, minVal), maxVal);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> clamp(vecType<T, P> const & x, T minVal, T maxVal)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || std::numeric_limits<T>::is_integer || GLM_UNRESTRICTED_GENTYPE, "'clamp' only accept floating-point or integer inputs");
return detail::compute_clamp_vector<T, P, vecType, detail::is_aligned<P>::value>::call(x, vecType<T, P>(minVal), vecType<T, P>(maxVal));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> clamp(vecType<T, P> const & x, vecType<T, P> const & minVal, vecType<T, P> const & maxVal)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || std::numeric_limits<T>::is_integer || GLM_UNRESTRICTED_GENTYPE, "'clamp' only accept floating-point or integer inputs");
return detail::compute_clamp_vector<T, P, vecType, detail::is_aligned<P>::value>::call(x, minVal, maxVal);
}
template <typename genTypeT, typename genTypeU>
GLM_FUNC_QUALIFIER genTypeT mix(genTypeT x, genTypeT y, genTypeU a)
{
return detail::compute_mix<genTypeT, genTypeU>::call(x, y, a);
}
template <typename T, typename U, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> mix(vecType<T, P> const & x, vecType<T, P> const & y, U a)
{
return detail::compute_mix_scalar<T, U, P, vecType, detail::is_aligned<P>::value>::call(x, y, a);
}
template <typename T, typename U, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> mix(vecType<T, P> const & x, vecType<T, P> const & y, vecType<U, P> const & a)
{
return detail::compute_mix_vector<T, U, P, vecType, detail::is_aligned<P>::value>::call(x, y, a);
}
// step
template <typename genType>
GLM_FUNC_QUALIFIER genType step(genType edge, genType x)
{
return mix(static_cast<genType>(1), static_cast<genType>(0), glm::lessThan(x, edge));
}
template <template <typename, precision> class vecType, typename T, precision P>
GLM_FUNC_QUALIFIER vecType<T, P> step(T edge, vecType<T, P> const & x)
{
return detail::compute_step_vector<T, P, vecType, detail::is_aligned<P>::value>::call(vecType<T, P>(edge), x);
}
template <template <typename, precision> class vecType, typename T, precision P>
GLM_FUNC_QUALIFIER vecType<T, P> step(vecType<T, P> const & edge, vecType<T, P> const & x)
{
return detail::compute_step_vector<T, P, vecType, detail::is_aligned<P>::value>::call(edge, x);
}
// smoothstep
template <typename genType>
GLM_FUNC_QUALIFIER genType smoothstep(genType edge0, genType edge1, genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'smoothstep' only accept floating-point inputs");
genType const tmp(clamp((x - edge0) / (edge1 - edge0), genType(0), genType(1)));
return tmp * tmp * (genType(3) - genType(2) * tmp);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> smoothstep(T edge0, T edge1, vecType<T, P> const & x)
{
return detail::compute_smoothstep_vector<T, P, vecType, detail::is_aligned<P>::value>::call(vecType<T, P>(edge0), vecType<T, P>(edge1), x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> smoothstep(vecType<T, P> const & edge0, vecType<T, P> const & edge1, vecType<T, P> const & x)
{
return detail::compute_smoothstep_vector<T, P, vecType, detail::is_aligned<P>::value>::call(edge0, edge1, x);
}
# if GLM_HAS_CXX11_STL
using std::isnan;
# else
template <typename genType>
GLM_FUNC_QUALIFIER bool isnan(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'isnan' only accept floating-point inputs");
# if GLM_HAS_CXX11_STL
return std::isnan(x);
# elif GLM_COMPILER & GLM_COMPILER_VC
return _isnan(x) != 0;
# elif GLM_COMPILER & GLM_COMPILER_INTEL
# if GLM_PLATFORM & GLM_PLATFORM_WINDOWS
return _isnan(x) != 0;
# else
return ::isnan(x) != 0;
# endif
# elif (GLM_COMPILER & (GLM_COMPILER_GCC | GLM_COMPILER_CLANG)) && (GLM_PLATFORM & GLM_PLATFORM_ANDROID) && __cplusplus < 201103L
return _isnan(x) != 0;
# elif GLM_COMPILER & GLM_COMPILER_CUDA
return isnan(x) != 0;
# else
return std::isnan(x);
# endif
}
# endif
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> isnan(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs");
return detail::functor1<bool, T, P, vecType>::call(isnan, x);
}
# if GLM_HAS_CXX11_STL
using std::isinf;
# else
template <typename genType>
GLM_FUNC_QUALIFIER bool isinf(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'isinf' only accept floating-point inputs");
# if GLM_HAS_CXX11_STL
return std::isinf(x);
# elif GLM_COMPILER & (GLM_COMPILER_INTEL | GLM_COMPILER_VC)
# if(GLM_PLATFORM & GLM_PLATFORM_WINDOWS)
return _fpclass(x) == _FPCLASS_NINF || _fpclass(x) == _FPCLASS_PINF;
# else
return ::isinf(x);
# endif
# elif GLM_COMPILER & (GLM_COMPILER_GCC | GLM_COMPILER_CLANG)
# if(GLM_PLATFORM & GLM_PLATFORM_ANDROID && __cplusplus < 201103L)
return _isinf(x) != 0;
# else
return std::isinf(x);
# endif
# elif GLM_COMPILER & GLM_COMPILER_CUDA
// http://developer.download.nvidia.com/compute/cuda/4_2/rel/toolkit/docs/online/group__CUDA__MATH__DOUBLE_g13431dd2b40b51f9139cbb7f50c18fab.html#g13431dd2b40b51f9139cbb7f50c18fab
return isinf(double(x)) != 0;
# else
return std::isinf(x);
# endif
}
# endif
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> isinf(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'isnan' only accept floating-point inputs");
return detail::functor1<bool, T, P, vecType>::call(isinf, x);
}
GLM_FUNC_QUALIFIER int floatBitsToInt(float const & v)
{
return reinterpret_cast<int&>(const_cast<float&>(v));
}
template <template <typename, precision> class vecType, precision P>
GLM_FUNC_QUALIFIER vecType<int, P> floatBitsToInt(vecType<float, P> const & v)
{
return reinterpret_cast<vecType<int, P>&>(const_cast<vecType<float, P>&>(v));
}
GLM_FUNC_QUALIFIER uint floatBitsToUint(float const & v)
{
return reinterpret_cast<uint&>(const_cast<float&>(v));
}
template <template <typename, precision> class vecType, precision P>
GLM_FUNC_QUALIFIER vecType<uint, P> floatBitsToUint(vecType<float, P> const & v)
{
return reinterpret_cast<vecType<uint, P>&>(const_cast<vecType<float, P>&>(v));
}
GLM_FUNC_QUALIFIER float intBitsToFloat(int const & v)
{
return reinterpret_cast<float&>(const_cast<int&>(v));
}
template <template <typename, precision> class vecType, precision P>
GLM_FUNC_QUALIFIER vecType<float, P> intBitsToFloat(vecType<int, P> const & v)
{
return reinterpret_cast<vecType<float, P>&>(const_cast<vecType<int, P>&>(v));
}
GLM_FUNC_QUALIFIER float uintBitsToFloat(uint const & v)
{
return reinterpret_cast<float&>(const_cast<uint&>(v));
}
template <template <typename, precision> class vecType, precision P>
GLM_FUNC_QUALIFIER vecType<float, P> uintBitsToFloat(vecType<uint, P> const & v)
{
return reinterpret_cast<vecType<float, P>&>(const_cast<vecType<uint, P>&>(v));
}
template <typename genType>
GLM_FUNC_QUALIFIER genType fma(genType const & a, genType const & b, genType const & c)
{
return a * b + c;
}
template <typename genType>
GLM_FUNC_QUALIFIER genType frexp(genType x, int & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'frexp' only accept floating-point inputs");
return std::frexp(x, &exp);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec1<T, P> frexp(tvec1<T, P> const & x, tvec1<int, P> & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'frexp' only accept floating-point inputs");
return tvec1<T, P>(std::frexp(x.x, &exp.x));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec2<T, P> frexp(tvec2<T, P> const & x, tvec2<int, P> & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'frexp' only accept floating-point inputs");
return tvec2<T, P>(
frexp(x.x, exp.x),
frexp(x.y, exp.y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> frexp(tvec3<T, P> const & x, tvec3<int, P> & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'frexp' only accept floating-point inputs");
return tvec3<T, P>(
frexp(x.x, exp.x),
frexp(x.y, exp.y),
frexp(x.z, exp.z));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> frexp(tvec4<T, P> const & x, tvec4<int, P> & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'frexp' only accept floating-point inputs");
return tvec4<T, P>(
frexp(x.x, exp.x),
frexp(x.y, exp.y),
frexp(x.z, exp.z),
frexp(x.w, exp.w));
}
template <typename genType>
GLM_FUNC_QUALIFIER genType ldexp(genType const & x, int const & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'ldexp' only accept floating-point inputs");
return std::ldexp(x, exp);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec1<T, P> ldexp(tvec1<T, P> const & x, tvec1<int, P> const & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'ldexp' only accept floating-point inputs");
return tvec1<T, P>(
ldexp(x.x, exp.x));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec2<T, P> ldexp(tvec2<T, P> const & x, tvec2<int, P> const & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'ldexp' only accept floating-point inputs");
return tvec2<T, P>(
ldexp(x.x, exp.x),
ldexp(x.y, exp.y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> ldexp(tvec3<T, P> const & x, tvec3<int, P> const & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'ldexp' only accept floating-point inputs");
return tvec3<T, P>(
ldexp(x.x, exp.x),
ldexp(x.y, exp.y),
ldexp(x.z, exp.z));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> ldexp(tvec4<T, P> const & x, tvec4<int, P> const & exp)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'ldexp' only accept floating-point inputs");
return tvec4<T, P>(
ldexp(x.x, exp.x),
ldexp(x.y, exp.y),
ldexp(x.z, exp.z),
ldexp(x.w, exp.w));
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS
# include "func_common_simd.inl"
#endif

View file

@ -0,0 +1,231 @@
/// @ref core
/// @file glm/detail/func_common_simd.inl
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
#include "../simd/common.h"
#include <immintrin.h>
namespace glm{
namespace detail
{
template <precision P>
struct compute_abs_vector<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_abs(v.data);
return result;
}
};
template <precision P>
struct compute_abs_vector<int, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<int, P> call(tvec4<int, P> const & v)
{
tvec4<int, P> result(uninitialize);
result.data = glm_ivec4_abs(v.data);
return result;
}
};
template <precision P>
struct compute_floor<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_floor(v.data);
return result;
}
};
template <precision P>
struct compute_ceil<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_ceil(v.data);
return result;
}
};
template <precision P>
struct compute_fract<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_fract(v.data);
return result;
}
};
template <precision P>
struct compute_round<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_round(v.data);
return result;
}
};
template <precision P>
struct compute_mod<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & x, tvec4<float, P> const & y)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_mod(x.data, y.data);
return result;
}
};
template <precision P>
struct compute_min_vector<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v1, tvec4<float, P> const & v2)
{
tvec4<float, P> result(uninitialize);
result.data = _mm_min_ps(v1.data, v2.data);
return result;
}
};
template <precision P>
struct compute_min_vector<int32, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<int32, P> call(tvec4<int32, P> const & v1, tvec4<int32, P> const & v2)
{
tvec4<int32, P> result(uninitialize);
result.data = _mm_min_epi32(v1.data, v2.data);
return result;
}
};
template <precision P>
struct compute_min_vector<uint32, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<int32, P> call(tvec4<uint32, P> const & v1, tvec4<uint32, P> const & v2)
{
tvec4<uint32, P> result(uninitialize);
result.data = _mm_min_epu32(v1.data, v2.data);
return result;
}
};
template <precision P>
struct compute_max_vector<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v1, tvec4<float, P> const & v2)
{
tvec4<float, P> result(uninitialize);
result.data = _mm_max_ps(v1.data, v2.data);
return result;
}
};
template <precision P>
struct compute_max_vector<int32, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<int32, P> call(tvec4<int32, P> const & v1, tvec4<int32, P> const & v2)
{
tvec4<int32, P> result(uninitialize);
result.data = _mm_max_epi32(v1.data, v2.data);
return result;
}
};
template <precision P>
struct compute_max_vector<uint32, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<uint32, P> call(tvec4<uint32, P> const & v1, tvec4<uint32, P> const & v2)
{
tvec4<uint32, P> result(uninitialize);
result.data = _mm_max_epu32(v1.data, v2.data);
return result;
}
};
template <precision P>
struct compute_clamp_vector<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & x, tvec4<float, P> const & minVal, tvec4<float, P> const & maxVal)
{
tvec4<float, P> result(uninitialize);
result.data = _mm_min_ps(_mm_max_ps(x.data, minVal.data), maxVal.data);
return result;
}
};
template <precision P>
struct compute_clamp_vector<int32, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<int32, P> call(tvec4<int32, P> const & x, tvec4<int32, P> const & minVal, tvec4<int32, P> const & maxVal)
{
tvec4<int32, P> result(uninitialize);
result.data = _mm_min_epi32(_mm_max_epi32(x.data, minVal.data), maxVal.data);
return result;
}
};
template <precision P>
struct compute_clamp_vector<uint32, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<uint32, P> call(tvec4<uint32, P> const & x, tvec4<uint32, P> const & minVal, tvec4<uint32, P> const & maxVal)
{
tvec4<uint32, P> result(uninitialize);
result.data = _mm_min_epu32(_mm_max_epu32(x.data, minVal.data), maxVal.data);
return result;
}
};
template <precision P>
struct compute_mix_vector<float, bool, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & x, tvec4<float, P> const & y, tvec4<bool, P> const & a)
{
__m128i const Load = _mm_set_epi32(-(int)a.w, -(int)a.z, -(int)a.y, -(int)a.x);
__m128 const Mask = _mm_castsi128_ps(Load);
tvec4<float, P> Result(uninitialize);
# if 0 && GLM_ARCH & GLM_ARCH_AVX
Result.data = _mm_blendv_ps(x.data, y.data, Mask);
# else
Result.data = _mm_or_ps(_mm_and_ps(Mask, y.data), _mm_andnot_ps(Mask, x.data));
# endif
return Result;
}
};
/* FIXME
template <precision P>
struct compute_step_vector<float, P, tvec4>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const& edge, tvec4<float, P> const& x)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_step(edge.data, x.data);
return result;
}
};
*/
template <precision P>
struct compute_smoothstep_vector<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const& edge0, tvec4<float, P> const& edge1, tvec4<float, P> const& x)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_smoothstep(edge0.data, edge1.data, x.data);
return result;
}
};
}//namespace detail
}//namespace glm
#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT

View file

@ -0,0 +1,103 @@
/// @ref core
/// @file glm/detail/func_exponential.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
///
/// @defgroup core_func_exponential Exponential functions
/// @ingroup core
///
/// These all operate component-wise. The description is per component.
#pragma once
#include "type_vec1.hpp"
#include "type_vec2.hpp"
#include "type_vec3.hpp"
#include "type_vec4.hpp"
#include <cmath>
namespace glm
{
/// @addtogroup core_func_exponential
/// @{
/// Returns 'base' raised to the power 'exponent'.
///
/// @param base Floating point value. pow function is defined for input values of 'base' defined in the range (inf-, inf+) in the limit of the type precision.
/// @param exponent Floating point value representing the 'exponent'.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/pow.xml">GLSL pow man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> pow(vecType<T, P> const & base, vecType<T, P> const & exponent);
/// Returns the natural exponentiation of x, i.e., e^x.
///
/// @param v exp function is defined for input values of v defined in the range (inf-, inf+) in the limit of the type precision.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/exp.xml">GLSL exp man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> exp(vecType<T, P> const & v);
/// Returns the natural logarithm of v, i.e.,
/// returns the value y which satisfies the equation x = e^y.
/// Results are undefined if v <= 0.
///
/// @param v log function is defined for input values of v defined in the range (0, inf+) in the limit of the type precision.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/log.xml">GLSL log man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> log(vecType<T, P> const & v);
/// Returns 2 raised to the v power.
///
/// @param v exp2 function is defined for input values of v defined in the range (inf-, inf+) in the limit of the type precision.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/exp2.xml">GLSL exp2 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> exp2(vecType<T, P> const & v);
/// Returns the base 2 log of x, i.e., returns the value y,
/// which satisfies the equation x = 2 ^ y.
///
/// @param v log2 function is defined for input values of v defined in the range (0, inf+) in the limit of the type precision.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/log2.xml">GLSL log2 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> log2(vecType<T, P> const & v);
/// Returns the positive square root of v.
///
/// @param v sqrt function is defined for input values of v defined in the range [0, inf+) in the limit of the type precision.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/sqrt.xml">GLSL sqrt man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
//template <typename genType>
//GLM_FUNC_DECL genType sqrt(genType const & x);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> sqrt(vecType<T, P> const & v);
/// Returns the reciprocal of the positive square root of v.
///
/// @param v inversesqrt function is defined for input values of v defined in the range [0, inf+) in the limit of the type precision.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/inversesqrt.xml">GLSL inversesqrt man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.2 Exponential Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> inversesqrt(vecType<T, P> const & v);
/// @}
}//namespace glm
#include "func_exponential.inl"

View file

@ -0,0 +1,146 @@
/// @ref core
/// @file glm/detail/func_exponential.inl
#include "func_vector_relational.hpp"
#include "_vectorize.hpp"
#include <limits>
#include <cmath>
#include <cassert>
namespace glm{
namespace detail
{
# if GLM_HAS_CXX11_STL
using std::log2;
# else
template <typename genType>
genType log2(genType Value)
{
return std::log(Value) * static_cast<genType>(1.4426950408889634073599246810019);
}
# endif
template <typename T, precision P, template <class, precision> class vecType, bool isFloat, bool Aligned>
struct compute_log2
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & vec)
{
return detail::functor1<T, T, P, vecType>::call(log2, vec);
}
};
template <template <class, precision> class vecType, typename T, precision P, bool Aligned>
struct compute_sqrt
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(std::sqrt, x);
}
};
template <template <class, precision> class vecType, typename T, precision P, bool Aligned>
struct compute_inversesqrt
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
return static_cast<T>(1) / sqrt(x);
}
};
template <template <class, precision> class vecType, bool Aligned>
struct compute_inversesqrt<vecType, float, lowp, Aligned>
{
GLM_FUNC_QUALIFIER static vecType<float, lowp> call(vecType<float, lowp> const & x)
{
vecType<float, lowp> tmp(x);
vecType<float, lowp> xhalf(tmp * 0.5f);
vecType<uint, lowp>* p = reinterpret_cast<vecType<uint, lowp>*>(const_cast<vecType<float, lowp>*>(&x));
vecType<uint, lowp> i = vecType<uint, lowp>(0x5f375a86) - (*p >> vecType<uint, lowp>(1));
vecType<float, lowp>* ptmp = reinterpret_cast<vecType<float, lowp>*>(&i);
tmp = *ptmp;
tmp = tmp * (1.5f - xhalf * tmp * tmp);
return tmp;
}
};
}//namespace detail
// pow
using std::pow;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> pow(vecType<T, P> const & base, vecType<T, P> const & exponent)
{
return detail::functor2<T, P, vecType>::call(pow, base, exponent);
}
// exp
using std::exp;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> exp(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(exp, x);
}
// log
using std::log;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> log(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(log, x);
}
//exp2, ln2 = 0.69314718055994530941723212145818f
template <typename genType>
GLM_FUNC_QUALIFIER genType exp2(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'exp2' only accept floating-point inputs");
return std::exp(static_cast<genType>(0.69314718055994530941723212145818) * x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> exp2(vecType<T, P> const & x)
{
return detail::functor1<T, T, P, vecType>::call(exp2, x);
}
// log2, ln2 = 0.69314718055994530941723212145818f
template <typename genType>
GLM_FUNC_QUALIFIER genType log2(genType x)
{
return log2(tvec1<genType>(x)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> log2(vecType<T, P> const & x)
{
return detail::compute_log2<T, P, vecType, std::numeric_limits<T>::is_iec559, detail::is_aligned<P>::value>::call(x);
}
// sqrt
using std::sqrt;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sqrt(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sqrt' only accept floating-point inputs");
return detail::compute_sqrt<vecType, T, P, detail::is_aligned<P>::value>::call(x);
}
// inversesqrt
template <typename genType>
GLM_FUNC_QUALIFIER genType inversesqrt(genType x)
{
return static_cast<genType>(1) / sqrt(x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> inversesqrt(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'inversesqrt' only accept floating-point inputs");
return detail::compute_inversesqrt<vecType, T, P, detail::is_aligned<P>::value>::call(x);
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS
# include "func_exponential_simd.inl"
#endif

View file

@ -0,0 +1,35 @@
/// @ref core
/// @file glm/detail/func_exponential_simd.inl
#include "../simd/exponential.h"
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
namespace glm{
namespace detail
{
template <precision P>
struct compute_sqrt<tvec4, float, P, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v)
{
tvec4<float, P> result(uninitialize);
result.data = _mm_sqrt_ps(v.data);
return result;
}
};
template <>
struct compute_sqrt<tvec4, float, aligned_lowp, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, aligned_lowp> call(tvec4<float, aligned_lowp> const & v)
{
tvec4<float, aligned_lowp> result(uninitialize);
result.data = glm_vec4_sqrt_lowp(v.data);
return result;
}
};
}//namespace detail
}//namespace glm
#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT

View file

@ -0,0 +1,113 @@
/// @ref core
/// @file glm/detail/func_geometric.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
///
/// @defgroup core_func_geometric Geometric functions
/// @ingroup core
///
/// These operate on vectors as vectors, not component-wise.
#pragma once
#include "type_vec3.hpp"
namespace glm
{
/// @addtogroup core_func_geometric
/// @{
/// Returns the length of x, i.e., sqrt(x * x).
///
/// @tparam genType Floating-point vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/length.xml">GLSL length man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL T length(
vecType<T, P> const & x);
/// Returns the distance betwwen p0 and p1, i.e., length(p0 - p1).
///
/// @tparam genType Floating-point vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/distance.xml">GLSL distance man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL T distance(
vecType<T, P> const & p0,
vecType<T, P> const & p1);
/// Returns the dot product of x and y, i.e., result = x * y.
///
/// @tparam genType Floating-point vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/dot.xml">GLSL dot man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL T dot(
vecType<T, P> const & x,
vecType<T, P> const & y);
/// Returns the cross product of x and y.
///
/// @tparam valType Floating-point scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/cross.xml">GLSL cross man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> cross(
tvec3<T, P> const & x,
tvec3<T, P> const & y);
/// Returns a vector in the same direction as x but with length of 1.
/// According to issue 10 GLSL 1.10 specification, if length(x) == 0 then result is undefined and generate an error.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/normalize.xml">GLSL normalize man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> normalize(
vecType<T, P> const & x);
/// If dot(Nref, I) < 0.0, return N, otherwise, return -N.
///
/// @tparam genType Floating-point vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/faceforward.xml">GLSL faceforward man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> faceforward(
vecType<T, P> const & N,
vecType<T, P> const & I,
vecType<T, P> const & Nref);
/// For the incident vector I and surface orientation N,
/// returns the reflection direction : result = I - 2.0 * dot(N, I) * N.
///
/// @tparam genType Floating-point vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/reflect.xml">GLSL reflect man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename genType>
GLM_FUNC_DECL genType reflect(
genType const & I,
genType const & N);
/// For the incident vector I and surface normal N,
/// and the ratio of indices of refraction eta,
/// return the refraction vector.
///
/// @tparam genType Floating-point vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/refract.xml">GLSL refract man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.5 Geometric Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> refract(
vecType<T, P> const & I,
vecType<T, P> const & N,
T eta);
/// @}
}//namespace glm
#include "func_geometric.inl"

View file

@ -0,0 +1,247 @@
/// @ref core
/// @file glm/detail/func_geometric.inl
#include "func_exponential.hpp"
#include "func_common.hpp"
#include "type_vec2.hpp"
#include "type_vec4.hpp"
#include "type_float.hpp"
namespace glm{
namespace detail
{
template <template <typename, precision> class vecType, typename T, precision P, bool Aligned>
struct compute_length
{
GLM_FUNC_QUALIFIER static T call(vecType<T, P> const & v)
{
return sqrt(dot(v, v));
}
};
template <template <typename, precision> class vecType, typename T, precision P, bool Aligned>
struct compute_distance
{
GLM_FUNC_QUALIFIER static T call(vecType<T, P> const & p0, vecType<T, P> const & p1)
{
return length(p1 - p0);
}
};
template <template <class, precision> class vecType, typename T, precision P, bool Aligned>
struct compute_dot{};
template <typename T, precision P, bool Aligned>
struct compute_dot<tvec1, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static T call(tvec1<T, P> const & a, tvec1<T, P> const & b)
{
return a.x * b.x;
}
};
template <typename T, precision P, bool Aligned>
struct compute_dot<tvec2, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static T call(tvec2<T, P> const & x, tvec2<T, P> const & y)
{
tvec2<T, P> tmp(x * y);
return tmp.x + tmp.y;
}
};
template <typename T, precision P, bool Aligned>
struct compute_dot<tvec3, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static T call(tvec3<T, P> const & x, tvec3<T, P> const & y)
{
tvec3<T, P> tmp(x * y);
return tmp.x + tmp.y + tmp.z;
}
};
template <typename T, precision P, bool Aligned>
struct compute_dot<tvec4, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static T call(tvec4<T, P> const & x, tvec4<T, P> const & y)
{
tvec4<T, P> tmp(x * y);
return (tmp.x + tmp.y) + (tmp.z + tmp.w);
}
};
template <typename T, precision P, bool Aligned>
struct compute_cross
{
GLM_FUNC_QUALIFIER static tvec3<T, P> call(tvec3<T, P> const & x, tvec3<T, P> const & y)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cross' accepts only floating-point inputs");
return tvec3<T, P>(
x.y * y.z - y.y * x.z,
x.z * y.x - y.z * x.x,
x.x * y.y - y.x * x.y);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_normalize
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' accepts only floating-point inputs");
return v * inversesqrt(dot(v, v));
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_faceforward
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & N, vecType<T, P> const & I, vecType<T, P> const & Nref)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' accepts only floating-point inputs");
return dot(Nref, I) < static_cast<T>(0) ? N : -N;
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_reflect
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & I, vecType<T, P> const & N)
{
return I - N * dot(N, I) * static_cast<T>(2);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool Aligned>
struct compute_refract
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & I, vecType<T, P> const & N, T eta)
{
T const dotValue(dot(N, I));
T const k(static_cast<T>(1) - eta * eta * (static_cast<T>(1) - dotValue * dotValue));
return (eta * I - (eta * dotValue + std::sqrt(k)) * N) * static_cast<T>(k >= static_cast<T>(0));
}
};
}//namespace detail
// length
template <typename genType>
GLM_FUNC_QUALIFIER genType length(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'length' accepts only floating-point inputs");
return abs(x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T length(vecType<T, P> const & v)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'length' accepts only floating-point inputs");
return detail::compute_length<vecType, T, P, detail::is_aligned<P>::value>::call(v);
}
// distance
template <typename genType>
GLM_FUNC_QUALIFIER genType distance(genType const & p0, genType const & p1)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'distance' accepts only floating-point inputs");
return length(p1 - p0);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T distance(vecType<T, P> const & p0, vecType<T, P> const & p1)
{
return detail::compute_distance<vecType, T, P, detail::is_aligned<P>::value>::call(p0, p1);
}
// dot
template <typename T>
GLM_FUNC_QUALIFIER T dot(T x, T y)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' accepts only floating-point inputs");
return x * y;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER T dot(vecType<T, P> const & x, vecType<T, P> const & y)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'dot' accepts only floating-point inputs");
return detail::compute_dot<vecType, T, P, detail::is_aligned<P>::value>::call(x, y);
}
// cross
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> cross(tvec3<T, P> const & x, tvec3<T, P> const & y)
{
return detail::compute_cross<T, P, detail::is_aligned<P>::value>::call(x, y);
}
// normalize
template <typename genType>
GLM_FUNC_QUALIFIER genType normalize(genType const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'normalize' accepts only floating-point inputs");
return x < genType(0) ? genType(-1) : genType(1);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> normalize(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'normalize' accepts only floating-point inputs");
return detail::compute_normalize<T, P, vecType, detail::is_aligned<P>::value>::call(x);
}
// faceforward
template <typename genType>
GLM_FUNC_QUALIFIER genType faceforward(genType const & N, genType const & I, genType const & Nref)
{
return dot(Nref, I) < static_cast<genType>(0) ? N : -N;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> faceforward(vecType<T, P> const & N, vecType<T, P> const & I, vecType<T, P> const & Nref)
{
return detail::compute_faceforward<T, P, vecType, detail::is_aligned<P>::value>::call(N, I, Nref);
}
// reflect
template <typename genType>
GLM_FUNC_QUALIFIER genType reflect(genType const & I, genType const & N)
{
return I - N * dot(N, I) * genType(2);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> reflect(vecType<T, P> const & I, vecType<T, P> const & N)
{
return detail::compute_reflect<T, P, vecType, detail::is_aligned<P>::value>::call(I, N);
}
// refract
template <typename genType>
GLM_FUNC_QUALIFIER genType refract(genType const & I, genType const & N, genType eta)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'refract' accepts only floating-point inputs");
genType const dotValue(dot(N, I));
genType const k(static_cast<genType>(1) - eta * eta * (static_cast<genType>(1) - dotValue * dotValue));
return (eta * I - (eta * dotValue + sqrt(k)) * N) * static_cast<genType>(k >= static_cast<genType>(0));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> refract(vecType<T, P> const & I, vecType<T, P> const & N, T eta)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'refract' accepts only floating-point inputs");
return detail::compute_refract<T, P, vecType, detail::is_aligned<P>::value>::call(I, N, eta);
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS
# include "func_geometric_simd.inl"
#endif

View file

@ -0,0 +1,99 @@
/// @ref core
/// @file glm/detail/func_geometric_simd.inl
#include "../simd/geometric.h"
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
namespace glm{
namespace detail
{
template <precision P>
struct compute_length<tvec4, float, P, true>
{
GLM_FUNC_QUALIFIER static float call(tvec4<float, P> const & v)
{
return _mm_cvtss_f32(glm_vec4_length(v.data));
}
};
template <precision P>
struct compute_distance<tvec4, float, P, true>
{
GLM_FUNC_QUALIFIER static float call(tvec4<float, P> const & p0, tvec4<float, P> const & p1)
{
return _mm_cvtss_f32(glm_vec4_distance(p0.data, p1.data));
}
};
template <precision P>
struct compute_dot<tvec4, float, P, true>
{
GLM_FUNC_QUALIFIER static float call(tvec4<float, P> const& x, tvec4<float, P> const& y)
{
return _mm_cvtss_f32(glm_vec1_dot(x.data, y.data));
}
};
template <precision P>
struct compute_cross<float, P, true>
{
GLM_FUNC_QUALIFIER static tvec3<float, P> call(tvec3<float, P> const & a, tvec3<float, P> const & b)
{
__m128 const set0 = _mm_set_ps(0.0f, a.z, a.y, a.x);
__m128 const set1 = _mm_set_ps(0.0f, b.z, b.y, b.x);
__m128 const xpd0 = glm_vec4_cross(set0, set1);
tvec4<float, P> result(uninitialize);
result.data = xpd0;
return tvec3<float, P>(result);
}
};
template <precision P>
struct compute_normalize<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const & v)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_normalize(v.data);
return result;
}
};
template <precision P>
struct compute_faceforward<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const& N, tvec4<float, P> const& I, tvec4<float, P> const& Nref)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_faceforward(N.data, I.data, Nref.data);
return result;
}
};
template <precision P>
struct compute_reflect<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const& I, tvec4<float, P> const& N)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_reflect(I.data, N.data);
return result;
}
};
template <precision P>
struct compute_refract<float, P, tvec4, true>
{
GLM_FUNC_QUALIFIER static tvec4<float, P> call(tvec4<float, P> const& I, tvec4<float, P> const& N, float eta)
{
tvec4<float, P> result(uninitialize);
result.data = glm_vec4_refract(I.data, N.data, _mm_set1_ps(eta));
return result;
}
};
}//namespace detail
}//namespace glm
#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT

View file

@ -0,0 +1,203 @@
/// @ref core
/// @file glm/detail/func_integer.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
///
/// @defgroup core_func_integer Integer functions
/// @ingroup core
///
/// These all operate component-wise. The description is per component.
/// The notation [a, b] means the set of bits from bit-number a through bit-number
/// b, inclusive. The lowest-order bit is bit 0.
#pragma once
#include "setup.hpp"
#include "precision.hpp"
#include "func_common.hpp"
#include "func_vector_relational.hpp"
namespace glm
{
/// @addtogroup core_func_integer
/// @{
/// Adds 32-bit unsigned integer x and y, returning the sum
/// modulo pow(2, 32). The value carry is set to 0 if the sum was
/// less than pow(2, 32), or to 1 otherwise.
///
/// @tparam genUType Unsigned integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/uaddCarry.xml">GLSL uaddCarry man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<uint, P> uaddCarry(
vecType<uint, P> const & x,
vecType<uint, P> const & y,
vecType<uint, P> & carry);
/// Subtracts the 32-bit unsigned integer y from x, returning
/// the difference if non-negative, or pow(2, 32) plus the difference
/// otherwise. The value borrow is set to 0 if x >= y, or to 1 otherwise.
///
/// @tparam genUType Unsigned integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/usubBorrow.xml">GLSL usubBorrow man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<uint, P> usubBorrow(
vecType<uint, P> const & x,
vecType<uint, P> const & y,
vecType<uint, P> & borrow);
/// Multiplies 32-bit integers x and y, producing a 64-bit
/// result. The 32 least-significant bits are returned in lsb.
/// The 32 most-significant bits are returned in msb.
///
/// @tparam genUType Unsigned integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/umulExtended.xml">GLSL umulExtended man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL void umulExtended(
vecType<uint, P> const & x,
vecType<uint, P> const & y,
vecType<uint, P> & msb,
vecType<uint, P> & lsb);
/// Multiplies 32-bit integers x and y, producing a 64-bit
/// result. The 32 least-significant bits are returned in lsb.
/// The 32 most-significant bits are returned in msb.
///
/// @tparam genIType Signed integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/imulExtended.xml">GLSL imulExtended man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL void imulExtended(
vecType<int, P> const & x,
vecType<int, P> const & y,
vecType<int, P> & msb,
vecType<int, P> & lsb);
/// Extracts bits [offset, offset + bits - 1] from value,
/// returning them in the least significant bits of the result.
/// For unsigned data types, the most significant bits of the
/// result will be set to zero. For signed data types, the
/// most significant bits will be set to the value of bit offset + base - 1.
///
/// If bits is zero, the result will be zero. The result will be
/// undefined if offset or bits is negative, or if the sum of
/// offset and bits is greater than the number of bits used
/// to store the operand.
///
/// @tparam T Signed or unsigned integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/bitfieldExtract.xml">GLSL bitfieldExtract man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> bitfieldExtract(
vecType<T, P> const & Value,
int Offset,
int Bits);
/// Returns the insertion the bits least-significant bits of insert into base.
///
/// The result will have bits [offset, offset + bits - 1] taken
/// from bits [0, bits - 1] of insert, and all other bits taken
/// directly from the corresponding bits of base. If bits is
/// zero, the result will simply be base. The result will be
/// undefined if offset or bits is negative, or if the sum of
/// offset and bits is greater than the number of bits used to
/// store the operand.
///
/// @tparam T Signed or unsigned integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/bitfieldInsert.xml">GLSL bitfieldInsert man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> bitfieldInsert(
vecType<T, P> const & Base,
vecType<T, P> const & Insert,
int Offset,
int Bits);
/// Returns the reversal of the bits of value.
/// The bit numbered n of the result will be taken from bit (bits - 1) - n of value,
/// where bits is the total number of bits used to represent value.
///
/// @tparam T Signed or unsigned integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/bitfieldReverse.xml">GLSL bitfieldReverse man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> bitfieldReverse(vecType<T, P> const & v);
/// Returns the number of bits set to 1 in the binary representation of value.
///
/// @tparam T Signed or unsigned integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/bitCount.xml">GLSL bitCount man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename genType>
GLM_FUNC_DECL int bitCount(genType v);
/// Returns the number of bits set to 1 in the binary representation of value.
///
/// @tparam T Signed or unsigned integer scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/bitCount.xml">GLSL bitCount man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<int, P> bitCount(vecType<T, P> const & v);
/// Returns the bit number of the least significant bit set to
/// 1 in the binary representation of value.
/// If value is zero, -1 will be returned.
///
/// @tparam T Signed or unsigned integer scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/findLSB.xml">GLSL findLSB man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename genIUType>
GLM_FUNC_DECL int findLSB(genIUType x);
/// Returns the bit number of the least significant bit set to
/// 1 in the binary representation of value.
/// If value is zero, -1 will be returned.
///
/// @tparam T Signed or unsigned integer scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/findLSB.xml">GLSL findLSB man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<int, P> findLSB(vecType<T, P> const & v);
/// Returns the bit number of the most significant bit in the binary representation of value.
/// For positive integers, the result will be the bit number of the most significant bit set to 1.
/// For negative integers, the result will be the bit number of the most significant
/// bit set to 0. For a value of zero or negative one, -1 will be returned.
///
/// @tparam T Signed or unsigned integer scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/findMSB.xml">GLSL findMSB man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename genIUType>
GLM_FUNC_DECL int findMSB(genIUType x);
/// Returns the bit number of the most significant bit in the binary representation of value.
/// For positive integers, the result will be the bit number of the most significant bit set to 1.
/// For negative integers, the result will be the bit number of the most significant
/// bit set to 0. For a value of zero or negative one, -1 will be returned.
///
/// @tparam T Signed or unsigned integer scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/findMSB.xml">GLSL findMSB man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.8 Integer Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<int, P> findMSB(vecType<T, P> const & v);
/// @}
}//namespace glm
#include "func_integer.inl"

View file

@ -0,0 +1,368 @@
/// @ref core
/// @file glm/detail/func_integer.inl
#include "type_vec2.hpp"
#include "type_vec3.hpp"
#include "type_vec4.hpp"
#include "type_int.hpp"
#include "_vectorize.hpp"
#if(GLM_ARCH & GLM_ARCH_X86 && GLM_COMPILER & GLM_COMPILER_VC)
# include <intrin.h>
# pragma intrinsic(_BitScanReverse)
#endif//(GLM_ARCH & GLM_ARCH_X86 && GLM_COMPILER & GLM_COMPILER_VC)
#include <limits>
#if !GLM_HAS_EXTENDED_INTEGER_TYPE
# if GLM_COMPILER & GLM_COMPILER_GCC
# pragma GCC diagnostic ignored "-Wlong-long"
# endif
# if (GLM_COMPILER & GLM_COMPILER_CLANG)
# pragma clang diagnostic ignored "-Wc++11-long-long"
# endif
#endif
namespace glm{
namespace detail
{
template <typename T>
GLM_FUNC_QUALIFIER T mask(T Bits)
{
return Bits >= sizeof(T) * 8 ? ~static_cast<T>(0) : (static_cast<T>(1) << Bits) - static_cast<T>(1);
}
template <typename T, glm::precision P, template <typename, glm::precision> class vecType, bool Aligned, bool EXEC>
struct compute_bitfieldReverseStep
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T, T)
{
return v;
}
};
template <typename T, glm::precision P, template <typename, glm::precision> class vecType, bool Aligned>
struct compute_bitfieldReverseStep<T, P, vecType, Aligned, true>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Mask, T Shift)
{
return (v & Mask) << Shift | (v & (~Mask)) >> Shift;
}
};
template <typename T, glm::precision P, template <typename, glm::precision> class vecType, bool Aligned, bool EXEC>
struct compute_bitfieldBitCountStep
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T, T)
{
return v;
}
};
template <typename T, glm::precision P, template <typename, glm::precision> class vecType, bool Aligned>
struct compute_bitfieldBitCountStep<T, P, vecType, Aligned, true>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Mask, T Shift)
{
return (v & Mask) + ((v >> Shift) & Mask);
}
};
template <typename genIUType, size_t Bits>
struct compute_findLSB
{
GLM_FUNC_QUALIFIER static int call(genIUType Value)
{
if(Value == 0)
return -1;
return glm::bitCount(~Value & (Value - static_cast<genIUType>(1)));
}
};
# if GLM_HAS_BITSCAN_WINDOWS
template <typename genIUType>
struct compute_findLSB<genIUType, 32>
{
GLM_FUNC_QUALIFIER static int call(genIUType Value)
{
unsigned long Result(0);
unsigned char IsNotNull = _BitScanForward(&Result, *reinterpret_cast<unsigned long*>(&Value));
return IsNotNull ? int(Result) : -1;
}
};
# if !((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_MODEL == GLM_MODEL_32))
template <typename genIUType>
struct compute_findLSB<genIUType, 64>
{
GLM_FUNC_QUALIFIER static int call(genIUType Value)
{
unsigned long Result(0);
unsigned char IsNotNull = _BitScanForward64(&Result, *reinterpret_cast<unsigned __int64*>(&Value));
return IsNotNull ? int(Result) : -1;
}
};
# endif
# endif//GLM_HAS_BITSCAN_WINDOWS
template <typename T, glm::precision P, template <class, glm::precision> class vecType, bool EXEC = true>
struct compute_findMSB_step_vec
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, T Shift)
{
return x | (x >> Shift);
}
};
template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
struct compute_findMSB_step_vec<T, P, vecType, false>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x, T)
{
return x;
}
};
template <typename T, glm::precision P, template <typename, glm::precision> class vecType, int>
struct compute_findMSB_vec
{
GLM_FUNC_QUALIFIER static vecType<int, P> call(vecType<T, P> const & vec)
{
vecType<T, P> x(vec);
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 8>::call(x, static_cast<T>( 1));
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 8>::call(x, static_cast<T>( 2));
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 8>::call(x, static_cast<T>( 4));
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 16>::call(x, static_cast<T>( 8));
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 32>::call(x, static_cast<T>(16));
x = compute_findMSB_step_vec<T, P, vecType, sizeof(T) * 8 >= 64>::call(x, static_cast<T>(32));
return vecType<int, P>(sizeof(T) * 8 - 1) - glm::bitCount(~x);
}
};
# if GLM_HAS_BITSCAN_WINDOWS
template <typename genIUType>
GLM_FUNC_QUALIFIER int compute_findMSB_32(genIUType Value)
{
unsigned long Result(0);
unsigned char IsNotNull = _BitScanReverse(&Result, *reinterpret_cast<unsigned long*>(&Value));
return IsNotNull ? int(Result) : -1;
}
template <typename T, glm::precision P, template<typename, glm::precision> class vecType>
struct compute_findMSB_vec<T, P, vecType, 32>
{
GLM_FUNC_QUALIFIER static vecType<int, P> call(vecType<T, P> const & x)
{
return detail::functor1<int, T, P, vecType>::call(compute_findMSB_32, x);
}
};
# if !((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_MODEL == GLM_MODEL_32))
template <typename genIUType>
GLM_FUNC_QUALIFIER int compute_findMSB_64(genIUType Value)
{
unsigned long Result(0);
unsigned char IsNotNull = _BitScanReverse64(&Result, *reinterpret_cast<unsigned __int64*>(&Value));
return IsNotNull ? int(Result) : -1;
}
template <typename T, glm::precision P, template <class, glm::precision> class vecType>
struct compute_findMSB_vec<T, P, vecType, 64>
{
GLM_FUNC_QUALIFIER static vecType<int, P> call(vecType<T, P> const & x)
{
return detail::functor1<int, T, P, vecType>::call(compute_findMSB_64, x);
}
};
# endif
# endif//GLM_HAS_BITSCAN_WINDOWS
}//namespace detail
// uaddCarry
GLM_FUNC_QUALIFIER uint uaddCarry(uint const & x, uint const & y, uint & Carry)
{
uint64 const Value64(static_cast<uint64>(x) + static_cast<uint64>(y));
uint64 const Max32((static_cast<uint64>(1) << static_cast<uint64>(32)) - static_cast<uint64>(1));
Carry = Value64 > Max32 ? 1u : 0u;
return static_cast<uint32>(Value64 % (Max32 + static_cast<uint64>(1)));
}
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<uint, P> uaddCarry(vecType<uint, P> const & x, vecType<uint, P> const & y, vecType<uint, P> & Carry)
{
vecType<uint64, P> Value64(vecType<uint64, P>(x) + vecType<uint64, P>(y));
vecType<uint64, P> Max32((static_cast<uint64>(1) << static_cast<uint64>(32)) - static_cast<uint64>(1));
Carry = mix(vecType<uint32, P>(0), vecType<uint32, P>(1), greaterThan(Value64, Max32));
return vecType<uint32,P>(Value64 % (Max32 + static_cast<uint64>(1)));
}
// usubBorrow
GLM_FUNC_QUALIFIER uint usubBorrow(uint const & x, uint const & y, uint & Borrow)
{
GLM_STATIC_ASSERT(sizeof(uint) == sizeof(uint32), "uint and uint32 size mismatch");
Borrow = x >= y ? static_cast<uint32>(0) : static_cast<uint32>(1);
if(y >= x)
return y - x;
else
return static_cast<uint32>((static_cast<int64>(1) << static_cast<int64>(32)) + (static_cast<int64>(y) - static_cast<int64>(x)));
}
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<uint, P> usubBorrow(vecType<uint, P> const & x, vecType<uint, P> const & y, vecType<uint, P> & Borrow)
{
Borrow = mix(vecType<uint, P>(1), vecType<uint, P>(0), greaterThanEqual(x, y));
vecType<uint, P> const YgeX(y - x);
vecType<uint, P> const XgeY(vecType<uint32, P>((static_cast<int64>(1) << static_cast<int64>(32)) + (vecType<int64, P>(y) - vecType<int64, P>(x))));
return mix(XgeY, YgeX, greaterThanEqual(y, x));
}
// umulExtended
GLM_FUNC_QUALIFIER void umulExtended(uint const & x, uint const & y, uint & msb, uint & lsb)
{
GLM_STATIC_ASSERT(sizeof(uint) == sizeof(uint32), "uint and uint32 size mismatch");
uint64 Value64 = static_cast<uint64>(x) * static_cast<uint64>(y);
msb = static_cast<uint>(Value64 >> static_cast<uint64>(32));
lsb = static_cast<uint>(Value64);
}
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER void umulExtended(vecType<uint, P> const & x, vecType<uint, P> const & y, vecType<uint, P> & msb, vecType<uint, P> & lsb)
{
GLM_STATIC_ASSERT(sizeof(uint) == sizeof(uint32), "uint and uint32 size mismatch");
vecType<uint64, P> Value64(vecType<uint64, P>(x) * vecType<uint64, P>(y));
msb = vecType<uint32, P>(Value64 >> static_cast<uint64>(32));
lsb = vecType<uint32, P>(Value64);
}
// imulExtended
GLM_FUNC_QUALIFIER void imulExtended(int x, int y, int & msb, int & lsb)
{
GLM_STATIC_ASSERT(sizeof(int) == sizeof(int32), "int and int32 size mismatch");
int64 Value64 = static_cast<int64>(x) * static_cast<int64>(y);
msb = static_cast<int>(Value64 >> static_cast<int64>(32));
lsb = static_cast<int>(Value64);
}
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER void imulExtended(vecType<int, P> const & x, vecType<int, P> const & y, vecType<int, P> & msb, vecType<int, P> & lsb)
{
GLM_STATIC_ASSERT(sizeof(int) == sizeof(int32), "int and int32 size mismatch");
vecType<int64, P> Value64(vecType<int64, P>(x) * vecType<int64, P>(y));
lsb = vecType<int32, P>(Value64 & static_cast<int64>(0xFFFFFFFF));
msb = vecType<int32, P>((Value64 >> static_cast<int64>(32)) & static_cast<int64>(0xFFFFFFFF));
}
// bitfieldExtract
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldExtract(genIUType Value, int Offset, int Bits)
{
return bitfieldExtract(tvec1<genIUType>(Value), Offset, Bits).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldExtract(vecType<T, P> const & Value, int Offset, int Bits)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldExtract' only accept integer inputs");
return (Value >> static_cast<T>(Offset)) & static_cast<T>(detail::mask(Bits));
}
// bitfieldInsert
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType bitfieldInsert(genIUType const & Base, genIUType const & Insert, int Offset, int Bits)
{
return bitfieldInsert(tvec1<genIUType>(Base), tvec1<genIUType>(Insert), Offset, Bits).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldInsert(vecType<T, P> const & Base, vecType<T, P> const & Insert, int Offset, int Bits)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'bitfieldInsert' only accept integer values");
T const Mask = static_cast<T>(detail::mask(Bits) << Offset);
return (Base & ~Mask) | (Insert & Mask);
}
// bitfieldReverse
template <typename genType>
GLM_FUNC_QUALIFIER genType bitfieldReverse(genType x)
{
return bitfieldReverse(glm::tvec1<genType, glm::defaultp>(x)).x;
}
template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> bitfieldReverse(vecType<T, P> const & v)
{
vecType<T, P> x(v);
x = detail::compute_bitfieldReverseStep<T, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 2>::call(x, T(0x5555555555555555ull), static_cast<T>( 1));
x = detail::compute_bitfieldReverseStep<T, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 4>::call(x, T(0x3333333333333333ull), static_cast<T>( 2));
x = detail::compute_bitfieldReverseStep<T, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 8>::call(x, T(0x0F0F0F0F0F0F0F0Full), static_cast<T>( 4));
x = detail::compute_bitfieldReverseStep<T, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 16>::call(x, T(0x00FF00FF00FF00FFull), static_cast<T>( 8));
x = detail::compute_bitfieldReverseStep<T, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 32>::call(x, T(0x0000FFFF0000FFFFull), static_cast<T>(16));
x = detail::compute_bitfieldReverseStep<T, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 64>::call(x, T(0x00000000FFFFFFFFull), static_cast<T>(32));
return x;
}
// bitCount
template <typename genType>
GLM_FUNC_QUALIFIER int bitCount(genType x)
{
return bitCount(glm::tvec1<genType, glm::defaultp>(x)).x;
}
template <typename T, glm::precision P, template <typename, glm::precision> class vecType>
GLM_FUNC_QUALIFIER vecType<int, P> bitCount(vecType<T, P> const & v)
{
vecType<typename detail::make_unsigned<T>::type, P> x(*reinterpret_cast<vecType<typename detail::make_unsigned<T>::type, P> const *>(&v));
x = detail::compute_bitfieldBitCountStep<typename detail::make_unsigned<T>::type, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 2>::call(x, typename detail::make_unsigned<T>::type(0x5555555555555555ull), typename detail::make_unsigned<T>::type( 1));
x = detail::compute_bitfieldBitCountStep<typename detail::make_unsigned<T>::type, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 4>::call(x, typename detail::make_unsigned<T>::type(0x3333333333333333ull), typename detail::make_unsigned<T>::type( 2));
x = detail::compute_bitfieldBitCountStep<typename detail::make_unsigned<T>::type, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 8>::call(x, typename detail::make_unsigned<T>::type(0x0F0F0F0F0F0F0F0Full), typename detail::make_unsigned<T>::type( 4));
x = detail::compute_bitfieldBitCountStep<typename detail::make_unsigned<T>::type, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 16>::call(x, typename detail::make_unsigned<T>::type(0x00FF00FF00FF00FFull), typename detail::make_unsigned<T>::type( 8));
x = detail::compute_bitfieldBitCountStep<typename detail::make_unsigned<T>::type, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 32>::call(x, typename detail::make_unsigned<T>::type(0x0000FFFF0000FFFFull), typename detail::make_unsigned<T>::type(16));
x = detail::compute_bitfieldBitCountStep<typename detail::make_unsigned<T>::type, P, vecType, detail::is_aligned<P>::value, sizeof(T) * 8>= 64>::call(x, typename detail::make_unsigned<T>::type(0x00000000FFFFFFFFull), typename detail::make_unsigned<T>::type(32));
return vecType<int, P>(x);
}
// findLSB
template <typename genIUType>
GLM_FUNC_QUALIFIER int findLSB(genIUType Value)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findLSB' only accept integer values");
return detail::compute_findLSB<genIUType, sizeof(genIUType) * 8>::call(Value);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<int, P> findLSB(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'findLSB' only accept integer values");
return detail::functor1<int, T, P, vecType>::call(findLSB, x);
}
// findMSB
template <typename genIUType>
GLM_FUNC_QUALIFIER int findMSB(genIUType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genIUType>::is_integer, "'findMSB' only accept integer values");
return findMSB(tvec1<genIUType>(x)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<int, P> findMSB(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_integer, "'findMSB' only accept integer values");
return detail::compute_findMSB_vec<T, P, vecType, sizeof(T) * 8>::call(x);
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS
# include "func_integer_simd.inl"
#endif

View file

@ -0,0 +1,68 @@
/// @ref core
/// @file glm/detail/func_integer_simd.inl
#include "../simd/integer.h"
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
namespace glm{
namespace detail
{
template <glm::precision P>
struct compute_bitfieldReverseStep<uint32, P, tvec4, true, true>
{
GLM_FUNC_QUALIFIER static tvec4<uint32, P> call(tvec4<uint32, P> const & v, uint32 Mask, uint32 Shift)
{
__m128i const set0 = v.data;
__m128i const set1 = _mm_set1_epi32(Mask);
__m128i const and1 = _mm_and_si128(set0, set1);
__m128i const sft1 = _mm_slli_epi32(and1, Shift);
__m128i const set2 = _mm_andnot_si128(set0, _mm_set1_epi32(-1));
__m128i const and2 = _mm_and_si128(set0, set2);
__m128i const sft2 = _mm_srai_epi32(and2, Shift);
__m128i const or0 = _mm_or_si128(sft1, sft2);
return or0;
}
};
template <glm::precision P>
struct compute_bitfieldBitCountStep<uint32, P, tvec4, true, true>
{
GLM_FUNC_QUALIFIER static tvec4<uint32, P> call(tvec4<uint32, P> const & v, uint32 Mask, uint32 Shift)
{
__m128i const set0 = v.data;
__m128i const set1 = _mm_set1_epi32(Mask);
__m128i const and0 = _mm_and_si128(set0, set1);
__m128i const sft0 = _mm_slli_epi32(set0, Shift);
__m128i const and1 = _mm_and_si128(sft0, set1);
__m128i const add0 = _mm_add_epi32(and0, and1);
return add0;
}
};
}//namespace detail
# if GLM_ARCH & GLM_ARCH_AVX_BIT
template <>
GLM_FUNC_QUALIFIER int bitCount(uint32 x)
{
return _mm_popcnt_u32(x);
}
# if(GLM_MODEL == GLM_MODEL_64)
template <>
GLM_FUNC_QUALIFIER int bitCount(uint64 x)
{
return static_cast<int>(_mm_popcnt_u64(x));
}
# endif//GLM_MODEL
# endif//GLM_ARCH
}//namespace glm
#endif//GLM_ARCH & GLM_ARCH_SSE2_BIT

View file

@ -0,0 +1,149 @@
/// @ref core
/// @file glm/detail/func_matrix.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
///
/// @defgroup core_func_matrix Matrix functions
/// @ingroup core
///
/// For each of the following built-in matrix functions, there is both a
/// single-precision floating point version, where all arguments and return values
/// are single precision, and a double-precision floating version, where all
/// arguments and return values are double precision. Only the single-precision
/// floating point version is shown.
#pragma once
// Dependencies
#include "../detail/precision.hpp"
#include "../detail/setup.hpp"
#include "../detail/type_mat.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../mat2x2.hpp"
#include "../mat2x3.hpp"
#include "../mat2x4.hpp"
#include "../mat3x2.hpp"
#include "../mat3x3.hpp"
#include "../mat3x4.hpp"
#include "../mat4x2.hpp"
#include "../mat4x3.hpp"
#include "../mat4x4.hpp"
namespace glm{
namespace detail
{
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec2, tvec2>
{
typedef tmat2x2<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec2, tvec3>
{
typedef tmat3x2<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec2, tvec4>
{
typedef tmat4x2<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec3, tvec2>
{
typedef tmat2x3<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec3, tvec3>
{
typedef tmat3x3<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec3, tvec4>
{
typedef tmat4x3<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec4, tvec2>
{
typedef tmat2x4<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec4, tvec3>
{
typedef tmat3x4<T, P> type;
};
template <typename T, precision P>
struct outerProduct_trait<T, P, tvec4, tvec4>
{
typedef tmat4x4<T, P> type;
};
}//namespace detail
/// @addtogroup core_func_matrix
/// @{
/// Multiply matrix x by matrix y component-wise, i.e.,
/// result[i][j] is the scalar product of x[i][j] and y[i][j].
///
/// @tparam matType Floating-point matrix types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/matrixCompMult.xml">GLSL matrixCompMult man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL matType<T, P> matrixCompMult(matType<T, P> const & x, matType<T, P> const & y);
/// Treats the first parameter c as a column vector
/// and the second parameter r as a row vector
/// and does a linear algebraic matrix multiply c * r.
///
/// @tparam matType Floating-point matrix types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/outerProduct.xml">GLSL outerProduct man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
template <typename T, precision P, template <typename, precision> class vecTypeA, template <typename, precision> class vecTypeB>
GLM_FUNC_DECL typename detail::outerProduct_trait<T, P, vecTypeA, vecTypeB>::type outerProduct(vecTypeA<T, P> const & c, vecTypeB<T, P> const & r);
/// Returns the transposed matrix of x
///
/// @tparam matType Floating-point matrix types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/transpose.xml">GLSL transpose man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
# if((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC11))
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL typename matType<T, P>::transpose_type transpose(matType<T, P> const & x);
# endif
/// Return the determinant of a squared matrix.
///
/// @tparam valType Floating-point scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/determinant.xml">GLSL determinant man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL T determinant(matType<T, P> const & m);
/// Return the inverse of a squared matrix.
///
/// @tparam valType Floating-point scalar types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/inverse.xml">GLSL inverse man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.6 Matrix Functions</a>
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_DECL matType<T, P> inverse(matType<T, P> const & m);
/// @}
}//namespace glm
#include "func_matrix.inl"

View file

@ -0,0 +1,401 @@
/// @ref core
/// @file glm/detail/func_matrix.inl
#include "../geometric.hpp"
#include <limits>
namespace glm{
namespace detail
{
template <template <typename, precision> class matType, typename T, precision P, bool Aligned>
struct compute_matrixCompMult
{
GLM_FUNC_QUALIFIER static matType<T, P> call(matType<T, P> const& x, matType<T, P> const& y)
{
matType<T, P> result(uninitialize);
for(length_t i = 0; i < result.length(); ++i)
result[i] = x[i] * y[i];
return result;
}
};
template <template <class, precision> class matType, typename T, precision P, bool Aligned>
struct compute_transpose{};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat2x2, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat2x2<T, P> call(tmat2x2<T, P> const & m)
{
tmat2x2<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
return result;
}
};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat2x3, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat3x2<T, P> call(tmat2x3<T, P> const & m)
{
tmat3x2<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
return result;
}
};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat2x4, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat4x2<T, P> call(tmat2x4<T, P> const & m)
{
tmat4x2<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[3][0] = m[0][3];
result[3][1] = m[1][3];
return result;
}
};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat3x2, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat2x3<T, P> call(tmat3x2<T, P> const & m)
{
tmat2x3<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
return result;
}
};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat3x3, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat3x3<T, P> call(tmat3x3<T, P> const & m)
{
tmat3x3<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[2][2] = m[2][2];
return result;
}
};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat3x4, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat4x3<T, P> call(tmat3x4<T, P> const & m)
{
tmat4x3<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[2][2] = m[2][2];
result[3][0] = m[0][3];
result[3][1] = m[1][3];
result[3][2] = m[2][3];
return result;
}
};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat4x2, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat2x4<T, P> call(tmat4x2<T, P> const & m)
{
tmat2x4<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[0][3] = m[3][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[1][3] = m[3][1];
return result;
}
};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat4x3, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat3x4<T, P> call(tmat4x3<T, P> const & m)
{
tmat3x4<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[0][3] = m[3][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[1][3] = m[3][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[2][2] = m[2][2];
result[2][3] = m[3][2];
return result;
}
};
template <typename T, precision P, bool Aligned>
struct compute_transpose<tmat4x4, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat4x4<T, P> call(tmat4x4<T, P> const & m)
{
tmat4x4<T, P> result(uninitialize);
result[0][0] = m[0][0];
result[0][1] = m[1][0];
result[0][2] = m[2][0];
result[0][3] = m[3][0];
result[1][0] = m[0][1];
result[1][1] = m[1][1];
result[1][2] = m[2][1];
result[1][3] = m[3][1];
result[2][0] = m[0][2];
result[2][1] = m[1][2];
result[2][2] = m[2][2];
result[2][3] = m[3][2];
result[3][0] = m[0][3];
result[3][1] = m[1][3];
result[3][2] = m[2][3];
result[3][3] = m[3][3];
return result;
}
};
template <template <typename, precision> class matType, typename T, precision P, bool Aligned>
struct compute_determinant{};
template <typename T, precision P, bool Aligned>
struct compute_determinant<tmat2x2, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static T call(tmat2x2<T, P> const & m)
{
return m[0][0] * m[1][1] - m[1][0] * m[0][1];
}
};
template <typename T, precision P, bool Aligned>
struct compute_determinant<tmat3x3, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static T call(tmat3x3<T, P> const & m)
{
return
+ m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
- m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2])
+ m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
}
};
template <typename T, precision P, bool Aligned>
struct compute_determinant<tmat4x4, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static T call(tmat4x4<T, P> const & m)
{
T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
tvec4<T, P> DetCof(
+ (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02),
- (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04),
+ (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05),
- (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05));
return
m[0][0] * DetCof[0] + m[0][1] * DetCof[1] +
m[0][2] * DetCof[2] + m[0][3] * DetCof[3];
}
};
template <template <typename, precision> class matType, typename T, precision P, bool Aligned>
struct compute_inverse{};
template <typename T, precision P, bool Aligned>
struct compute_inverse<tmat2x2, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat2x2<T, P> call(tmat2x2<T, P> const& m)
{
T OneOverDeterminant = static_cast<T>(1) / (
+ m[0][0] * m[1][1]
- m[1][0] * m[0][1]);
tmat2x2<T, P> Inverse(
+ m[1][1] * OneOverDeterminant,
- m[0][1] * OneOverDeterminant,
- m[1][0] * OneOverDeterminant,
+ m[0][0] * OneOverDeterminant);
return Inverse;
}
};
template <typename T, precision P, bool Aligned>
struct compute_inverse<tmat3x3, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat3x3<T, P> call(tmat3x3<T, P> const& m)
{
T OneOverDeterminant = static_cast<T>(1) / (
+ m[0][0] * (m[1][1] * m[2][2] - m[2][1] * m[1][2])
- m[1][0] * (m[0][1] * m[2][2] - m[2][1] * m[0][2])
+ m[2][0] * (m[0][1] * m[1][2] - m[1][1] * m[0][2]));
tmat3x3<T, P> Inverse(uninitialize);
Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]) * OneOverDeterminant;
Inverse[1][0] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]) * OneOverDeterminant;
Inverse[2][0] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]) * OneOverDeterminant;
Inverse[0][1] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]) * OneOverDeterminant;
Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]) * OneOverDeterminant;
Inverse[2][1] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]) * OneOverDeterminant;
Inverse[0][2] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]) * OneOverDeterminant;
Inverse[1][2] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]) * OneOverDeterminant;
Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]) * OneOverDeterminant;
return Inverse;
}
};
template <typename T, precision P, bool Aligned>
struct compute_inverse<tmat4x4, T, P, Aligned>
{
GLM_FUNC_QUALIFIER static tmat4x4<T, P> call(tmat4x4<T, P> const& m)
{
T Coef00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T Coef02 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
T Coef03 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
T Coef04 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T Coef06 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T Coef07 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
T Coef08 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T Coef10 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
T Coef11 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
T Coef12 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T Coef14 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
T Coef15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
T Coef16 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T Coef18 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
T Coef19 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
T Coef20 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
T Coef22 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
T Coef23 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
tvec4<T, P> Fac0(Coef00, Coef00, Coef02, Coef03);
tvec4<T, P> Fac1(Coef04, Coef04, Coef06, Coef07);
tvec4<T, P> Fac2(Coef08, Coef08, Coef10, Coef11);
tvec4<T, P> Fac3(Coef12, Coef12, Coef14, Coef15);
tvec4<T, P> Fac4(Coef16, Coef16, Coef18, Coef19);
tvec4<T, P> Fac5(Coef20, Coef20, Coef22, Coef23);
tvec4<T, P> Vec0(m[1][0], m[0][0], m[0][0], m[0][0]);
tvec4<T, P> Vec1(m[1][1], m[0][1], m[0][1], m[0][1]);
tvec4<T, P> Vec2(m[1][2], m[0][2], m[0][2], m[0][2]);
tvec4<T, P> Vec3(m[1][3], m[0][3], m[0][3], m[0][3]);
tvec4<T, P> Inv0(Vec1 * Fac0 - Vec2 * Fac1 + Vec3 * Fac2);
tvec4<T, P> Inv1(Vec0 * Fac0 - Vec2 * Fac3 + Vec3 * Fac4);
tvec4<T, P> Inv2(Vec0 * Fac1 - Vec1 * Fac3 + Vec3 * Fac5);
tvec4<T, P> Inv3(Vec0 * Fac2 - Vec1 * Fac4 + Vec2 * Fac5);
tvec4<T, P> SignA(+1, -1, +1, -1);
tvec4<T, P> SignB(-1, +1, -1, +1);
tmat4x4<T, P> Inverse(Inv0 * SignA, Inv1 * SignB, Inv2 * SignA, Inv3 * SignB);
tvec4<T, P> Row0(Inverse[0][0], Inverse[1][0], Inverse[2][0], Inverse[3][0]);
tvec4<T, P> Dot0(m[0] * Row0);
T Dot1 = (Dot0.x + Dot0.y) + (Dot0.z + Dot0.w);
T OneOverDeterminant = static_cast<T>(1) / Dot1;
return Inverse * OneOverDeterminant;
}
};
}//namespace detail
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER matType<T, P> matrixCompMult(matType<T, P> const & x, matType<T, P> const & y)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'matrixCompMult' only accept floating-point inputs");
return detail::compute_matrixCompMult<matType, T, P, detail::is_aligned<P>::value>::call(x, y);
}
template<typename T, precision P, template <typename, precision> class vecTypeA, template <typename, precision> class vecTypeB>
GLM_FUNC_QUALIFIER typename detail::outerProduct_trait<T, P, vecTypeA, vecTypeB>::type outerProduct(vecTypeA<T, P> const & c, vecTypeB<T, P> const & r)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'outerProduct' only accept floating-point inputs");
typename detail::outerProduct_trait<T, P, vecTypeA, vecTypeB>::type m(uninitialize);
for(length_t i = 0; i < m.length(); ++i)
m[i] = c * r[i];
return m;
}
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER typename matType<T, P>::transpose_type transpose(matType<T, P> const & m)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'transpose' only accept floating-point inputs");
return detail::compute_transpose<matType, T, P, detail::is_aligned<P>::value>::call(m);
}
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER T determinant(matType<T, P> const & m)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'determinant' only accept floating-point inputs");
return detail::compute_determinant<matType, T, P, detail::is_aligned<P>::value>::call(m);
}
template <typename T, precision P, template <typename, precision> class matType>
GLM_FUNC_QUALIFIER matType<T, P> inverse(matType<T, P> const & m)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || GLM_UNRESTRICTED_GENTYPE, "'inverse' only accept floating-point inputs");
return detail::compute_inverse<matType, T, P, detail::is_aligned<P>::value>::call(m);
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS
# include "func_matrix_simd.inl"
#endif

View file

@ -0,0 +1,88 @@
/// @ref core
/// @file glm/detail/func_matrix_simd.inl
#if GLM_ARCH & GLM_ARCH_SSE2_BIT
#include "type_mat4x4.hpp"
#include "func_geometric.hpp"
#include "../simd/matrix.h"
namespace glm{
namespace detail
{
template <precision P>
struct compute_matrixCompMult<tmat4x4, float, P, true>
{
GLM_STATIC_ASSERT(detail::is_aligned<P>::value, "Specialization requires aligned");
GLM_FUNC_QUALIFIER static tmat4x4<float, P> call(tmat4x4<float, P> const & x, tmat4x4<float, P> const & y)
{
tmat4x4<float, P> result(uninitialize);
glm_mat4_matrixCompMult(
*(glm_vec4 const (*)[4])&x[0].data,
*(glm_vec4 const (*)[4])&y[0].data,
*(glm_vec4(*)[4])&result[0].data);
return result;
}
};
template <precision P>
struct compute_transpose<tmat4x4, float, P, true>
{
GLM_FUNC_QUALIFIER static tmat4x4<float, P> call(tmat4x4<float, P> const & m)
{
tmat4x4<float, P> result(uninitialize);
glm_mat4_transpose(
*(glm_vec4 const (*)[4])&m[0].data,
*(glm_vec4(*)[4])&result[0].data);
return result;
}
};
template <precision P>
struct compute_determinant<tmat4x4, float, P, true>
{
GLM_FUNC_QUALIFIER static float call(tmat4x4<float, P> const& m)
{
return _mm_cvtss_f32(glm_mat4_determinant(*reinterpret_cast<__m128 const(*)[4]>(&m[0].data)));
}
};
template <precision P>
struct compute_inverse<tmat4x4, float, P, true>
{
GLM_FUNC_QUALIFIER static tmat4x4<float, P> call(tmat4x4<float, P> const& m)
{
tmat4x4<float, P> Result(uninitialize);
glm_mat4_inverse(*reinterpret_cast<__m128 const(*)[4]>(&m[0].data), *reinterpret_cast<__m128(*)[4]>(&Result[0].data));
return Result;
}
};
}//namespace detail
template<>
GLM_FUNC_QUALIFIER tmat4x4<float, aligned_lowp> outerProduct<float, aligned_lowp, tvec4, tvec4>(tvec4<float, aligned_lowp> const & c, tvec4<float, aligned_lowp> const & r)
{
tmat4x4<float, aligned_lowp> m(uninitialize);
glm_mat4_outerProduct(c.data, r.data, *reinterpret_cast<__m128(*)[4]>(&m[0].data));
return m;
}
template<>
GLM_FUNC_QUALIFIER tmat4x4<float, aligned_mediump> outerProduct<float, aligned_mediump, tvec4, tvec4>(tvec4<float, aligned_mediump> const & c, tvec4<float, aligned_mediump> const & r)
{
tmat4x4<float, aligned_mediump> m(uninitialize);
glm_mat4_outerProduct(c.data, r.data, *reinterpret_cast<__m128(*)[4]>(&m[0].data));
return m;
}
template<>
GLM_FUNC_QUALIFIER tmat4x4<float, aligned_highp> outerProduct<float, aligned_highp, tvec4, tvec4>(tvec4<float, aligned_highp> const & c, tvec4<float, aligned_highp> const & r)
{
tmat4x4<float, aligned_highp> m(uninitialize);
glm_mat4_outerProduct(c.data, r.data, *reinterpret_cast<__m128(*)[4]>(&m[0].data));
return m;
}
}//namespace glm
#endif

View file

@ -0,0 +1,168 @@
/// @ref core
/// @file glm/detail/func_packing.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
/// @see gtc_packing
///
/// @defgroup core_func_packing Floating-Point Pack and Unpack Functions
/// @ingroup core
///
/// These functions do not operate component-wise, rather as described in each case.
#pragma once
#include "type_vec2.hpp"
#include "type_vec4.hpp"
namespace glm
{
/// @addtogroup core_func_packing
/// @{
/// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm2x16: round(clamp(c, 0, +1) * 65535.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm2x16.xml">GLSL packUnorm2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint packUnorm2x16(vec2 const & v);
/// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packSnorm2x16: round(clamp(v, -1, +1) * 32767.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm2x16.xml">GLSL packSnorm2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint packSnorm2x16(vec2 const & v);
/// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint packUnorm4x8(vec4 const & v);
/// First, converts each component of the normalized floating-point value v into 8- or 16-bit integer values.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint packSnorm4x8(vec4 const & v);
/// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm2x16: f / 65535.0
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec2 unpackUnorm2x16(uint p);
/// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec2 unpackSnorm2x16(uint p);
/// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm4x8: f / 255.0
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec4 unpackUnorm4x8(uint p);
/// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm4x8: clamp(f / 127.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec4 unpackSnorm4x8(uint p);
/// Returns a double-precision value obtained by packing the components of v into a 64-bit value.
/// If an IEEE 754 Inf or NaN is created, it will not signal, and the resulting floating point value is unspecified.
/// Otherwise, the bit- level representation of v is preserved.
/// The first vector component specifies the 32 least significant bits;
/// the second component specifies the 32 most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packDouble2x32.xml">GLSL packDouble2x32 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL double packDouble2x32(uvec2 const & v);
/// Returns a two-component unsigned integer vector representation of v.
/// The bit-level representation of v is preserved.
/// The first component of the vector contains the 32 least significant bits of the double;
/// the second component consists the 32 most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackDouble2x32.xml">GLSL unpackDouble2x32 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uvec2 unpackDouble2x32(double v);
/// Returns an unsigned integer obtained by converting the components of a two-component floating-point vector
/// to the 16-bit floating-point representation found in the OpenGL Specification,
/// and then packing these two 16- bit integers into a 32-bit unsigned integer.
/// The first vector component specifies the 16 least-significant bits of the result;
/// the second component specifies the 16 most-significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint packHalf2x16(vec2 const & v);
/// Returns a two-component floating-point vector with components obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit values,
/// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification,
/// and converting them to 32-bit floating-point values.
/// The first component of the vector is obtained from the 16 least-significant bits of v;
/// the second component is obtained from the 16 most-significant bits of v.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec2 unpackHalf2x16(uint v);
/// @}
}//namespace glm
#include "func_packing.inl"

View file

@ -0,0 +1,190 @@
/// @ref core
/// @file glm/detail/func_packing.inl
#include "func_common.hpp"
#include "type_half.hpp"
#include "../fwd.hpp"
namespace glm
{
GLM_FUNC_QUALIFIER uint packUnorm2x16(vec2 const & v)
{
union
{
u16 in[2];
uint out;
} u;
u16vec2 result(round(clamp(v, 0.0f, 1.0f) * 65535.0f));
u.in[0] = result[0];
u.in[1] = result[1];
return u.out;
}
GLM_FUNC_QUALIFIER vec2 unpackUnorm2x16(uint p)
{
union
{
uint in;
u16 out[2];
} u;
u.in = p;
return vec2(u.out[0], u.out[1]) * 1.5259021896696421759365224689097e-5f;
}
GLM_FUNC_QUALIFIER uint packSnorm2x16(vec2 const & v)
{
union
{
i16 in[2];
uint out;
} u;
i16vec2 result(round(clamp(v, -1.0f, 1.0f) * 32767.0f));
u.in[0] = result[0];
u.in[1] = result[1];
return u.out;
}
GLM_FUNC_QUALIFIER vec2 unpackSnorm2x16(uint p)
{
union
{
uint in;
i16 out[2];
} u;
u.in = p;
return clamp(vec2(u.out[0], u.out[1]) * 3.0518509475997192297128208258309e-5f, -1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint packUnorm4x8(vec4 const & v)
{
union
{
u8 in[4];
uint out;
} u;
u8vec4 result(round(clamp(v, 0.0f, 1.0f) * 255.0f));
u.in[0] = result[0];
u.in[1] = result[1];
u.in[2] = result[2];
u.in[3] = result[3];
return u.out;
}
GLM_FUNC_QUALIFIER vec4 unpackUnorm4x8(uint p)
{
union
{
uint in;
u8 out[4];
} u;
u.in = p;
return vec4(u.out[0], u.out[1], u.out[2], u.out[3]) * 0.0039215686274509803921568627451f;
}
GLM_FUNC_QUALIFIER uint packSnorm4x8(vec4 const & v)
{
union
{
i8 in[4];
uint out;
} u;
i8vec4 result(round(clamp(v, -1.0f, 1.0f) * 127.0f));
u.in[0] = result[0];
u.in[1] = result[1];
u.in[2] = result[2];
u.in[3] = result[3];
return u.out;
}
GLM_FUNC_QUALIFIER glm::vec4 unpackSnorm4x8(uint p)
{
union
{
uint in;
i8 out[4];
} u;
u.in = p;
return clamp(vec4(u.out[0], u.out[1], u.out[2], u.out[3]) * 0.0078740157480315f, -1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER double packDouble2x32(uvec2 const & v)
{
union
{
uint in[2];
double out;
} u;
u.in[0] = v[0];
u.in[1] = v[1];
return u.out;
}
GLM_FUNC_QUALIFIER uvec2 unpackDouble2x32(double v)
{
union
{
double in;
uint out[2];
} u;
u.in = v;
return uvec2(u.out[0], u.out[1]);
}
GLM_FUNC_QUALIFIER uint packHalf2x16(vec2 const & v)
{
union
{
i16 in[2];
uint out;
} u;
u.in[0] = detail::toFloat16(v.x);
u.in[1] = detail::toFloat16(v.y);
return u.out;
}
GLM_FUNC_QUALIFIER vec2 unpackHalf2x16(uint v)
{
union
{
uint in;
i16 out[2];
} u;
u.in = v;
return vec2(
detail::toFloat32(u.out[0]),
detail::toFloat32(u.out[1]));
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS
# include "func_packing_simd.inl"
#endif

View file

@ -0,0 +1,9 @@
/// @ref core
/// @file glm/detail/func_packing_simd.inl
namespace glm{
namespace detail
{
}//namespace detail
}//namespace glm

View file

@ -0,0 +1,176 @@
/// @ref core
/// @file glm/detail/func_trigonometric.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
///
/// @defgroup core_func_trigonometric Angle and Trigonometry Functions
/// @ingroup core
///
/// Function parameters specified as angle are assumed to be in units of radians.
/// In no case will any of these functions result in a divide by zero error. If
/// the divisor of a ratio is 0, then results will be undefined.
///
/// These all operate component-wise. The description is per component.
#pragma once
#include "setup.hpp"
#include "precision.hpp"
namespace glm
{
/// @addtogroup core_func_trigonometric
/// @{
/// Converts degrees to radians and returns the result.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/radians.xml">GLSL radians man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL GLM_CONSTEXPR vecType<T, P> radians(vecType<T, P> const & degrees);
/// Converts radians to degrees and returns the result.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/degrees.xml">GLSL degrees man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL GLM_CONSTEXPR vecType<T, P> degrees(vecType<T, P> const & radians);
/// The standard trigonometric sine function.
/// The values returned by this function will range from [-1, 1].
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/sin.xml">GLSL sin man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> sin(vecType<T, P> const & angle);
/// The standard trigonometric cosine function.
/// The values returned by this function will range from [-1, 1].
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/cos.xml">GLSL cos man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> cos(vecType<T, P> const & angle);
/// The standard trigonometric tangent function.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/tan.xml">GLSL tan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> tan(vecType<T, P> const & angle);
/// Arc sine. Returns an angle whose sine is x.
/// The range of values returned by this function is [-PI/2, PI/2].
/// Results are undefined if |x| > 1.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/asin.xml">GLSL asin man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> asin(vecType<T, P> const & x);
/// Arc cosine. Returns an angle whose sine is x.
/// The range of values returned by this function is [0, PI].
/// Results are undefined if |x| > 1.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/acos.xml">GLSL acos man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> acos(vecType<T, P> const & x);
/// Arc tangent. Returns an angle whose tangent is y/x.
/// The signs of x and y are used to determine what
/// quadrant the angle is in. The range of values returned
/// by this function is [-PI, PI]. Results are undefined
/// if x and y are both 0.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/atan.xml">GLSL atan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> atan(vecType<T, P> const & y, vecType<T, P> const & x);
/// Arc tangent. Returns an angle whose tangent is y_over_x.
/// The range of values returned by this function is [-PI/2, PI/2].
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/atan.xml">GLSL atan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> atan(vecType<T, P> const & y_over_x);
/// Returns the hyperbolic sine function, (exp(x) - exp(-x)) / 2
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/sinh.xml">GLSL sinh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> sinh(vecType<T, P> const & angle);
/// Returns the hyperbolic cosine function, (exp(x) + exp(-x)) / 2
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/cosh.xml">GLSL cosh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> cosh(vecType<T, P> const & angle);
/// Returns the hyperbolic tangent function, sinh(angle) / cosh(angle)
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/tanh.xml">GLSL tanh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> tanh(vecType<T, P> const & angle);
/// Arc hyperbolic sine; returns the inverse of sinh.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/asinh.xml">GLSL asinh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> asinh(vecType<T, P> const & x);
/// Arc hyperbolic cosine; returns the non-negative inverse
/// of cosh. Results are undefined if x < 1.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/acosh.xml">GLSL acosh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> acosh(vecType<T, P> const & x);
/// Arc hyperbolic tangent; returns the inverse of tanh.
/// Results are undefined if abs(x) >= 1.
///
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/atanh.xml">GLSL atanh man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.1 Angle and Trigonometry Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> atanh(vecType<T, P> const & x);
/// @}
}//namespace glm
#include "func_trigonometric.inl"

View file

@ -0,0 +1,200 @@
/// @ref core
/// @file glm/detail/func_trigonometric.inl
#include "_vectorize.hpp"
#include <cmath>
#include <limits>
namespace glm
{
// radians
template <typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType radians(genType degrees)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'radians' only accept floating-point input");
return degrees * static_cast<genType>(0.01745329251994329576923690768489);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR vecType<T, P> radians(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(radians, v);
}
// degrees
template <typename genType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR genType degrees(genType radians)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'degrees' only accept floating-point input");
return radians * static_cast<genType>(57.295779513082320876798154814105);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR vecType<T, P> degrees(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(degrees, v);
}
// sin
using ::std::sin;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sin(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(sin, v);
}
// cos
using std::cos;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> cos(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(cos, v);
}
// tan
using std::tan;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> tan(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(tan, v);
}
// asin
using std::asin;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> asin(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(asin, v);
}
// acos
using std::acos;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> acos(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(acos, v);
}
// atan
template <typename genType>
GLM_FUNC_QUALIFIER genType atan(genType y, genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'atan' only accept floating-point input");
return ::std::atan2(y, x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> atan(vecType<T, P> const & a, vecType<T, P> const & b)
{
return detail::functor2<T, P, vecType>::call(::std::atan2, a, b);
}
using std::atan;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> atan(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(atan, v);
}
// sinh
using std::sinh;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sinh(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(sinh, v);
}
// cosh
using std::cosh;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> cosh(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(cosh, v);
}
// tanh
using std::tanh;
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> tanh(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(tanh, v);
}
// asinh
# if GLM_HAS_CXX11_STL
using std::asinh;
# else
template <typename genType>
GLM_FUNC_QUALIFIER genType asinh(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asinh' only accept floating-point input");
return (x < static_cast<genType>(0) ? static_cast<genType>(-1) : (x > static_cast<genType>(0) ? static_cast<genType>(1) : static_cast<genType>(0))) * log(std::abs(x) + sqrt(static_cast<genType>(1) + x * x));
}
# endif
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> asinh(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(asinh, v);
}
// acosh
# if GLM_HAS_CXX11_STL
using std::acosh;
# else
template <typename genType>
GLM_FUNC_QUALIFIER genType acosh(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acosh' only accept floating-point input");
if(x < static_cast<genType>(1))
return static_cast<genType>(0);
return log(x + sqrt(x * x - static_cast<genType>(1)));
}
# endif
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> acosh(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(acosh, v);
}
// atanh
# if GLM_HAS_CXX11_STL
using std::atanh;
# else
template <typename genType>
GLM_FUNC_QUALIFIER genType atanh(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'atanh' only accept floating-point input");
if(std::abs(x) >= static_cast<genType>(1))
return 0;
return static_cast<genType>(0.5) * log((static_cast<genType>(1) + x) / (static_cast<genType>(1) - x));
}
# endif
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> atanh(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(atanh, v);
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS
# include "func_trigonometric_simd.inl"
#endif

View file

@ -0,0 +1,111 @@
/// @ref core
/// @file glm/detail/func_vector_relational.hpp
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
///
/// @defgroup core_func_vector_relational Vector Relational Functions
/// @ingroup core
///
/// Relational and equality operators (<, <=, >, >=, ==, !=) are defined to
/// operate on scalars and produce scalar Boolean results. For vector results,
/// use the following built-in functions.
///
/// In all cases, the sizes of all the input and return vectors for any particular
/// call must match.
#pragma once
#include "precision.hpp"
#include "setup.hpp"
namespace glm
{
/// @addtogroup core_func_vector_relational
/// @{
/// Returns the component-wise comparison result of x < y.
///
/// @tparam vecType Floating-point or integer vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/lessThan.xml">GLSL lessThan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> lessThan(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns the component-wise comparison of result x <= y.
///
/// @tparam vecType Floating-point or integer vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/lessThanEqual.xml">GLSL lessThanEqual man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> lessThanEqual(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns the component-wise comparison of result x > y.
///
/// @tparam vecType Floating-point or integer vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/greaterThan.xml">GLSL greaterThan man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> greaterThan(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns the component-wise comparison of result x >= y.
///
/// @tparam vecType Floating-point or integer vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/greaterThanEqual.xml">GLSL greaterThanEqual man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> greaterThanEqual(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns the component-wise comparison of result x == y.
///
/// @tparam vecType Floating-point, integer or boolean vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/equal.xml">GLSL equal man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> equal(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns the component-wise comparison of result x != y.
///
/// @tparam vecType Floating-point, integer or boolean vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/notEqual.xml">GLSL notEqual man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> notEqual(vecType<T, P> const & x, vecType<T, P> const & y);
/// Returns true if any component of x is true.
///
/// @tparam vecType Boolean vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/any.xml">GLSL any man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL bool any(vecType<bool, P> const & v);
/// Returns true if all components of x are true.
///
/// @tparam vecType Boolean vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/all.xml">GLSL all man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL bool all(vecType<bool, P> const & v);
/// Returns the component-wise logical complement of x.
/// /!\ Because of language incompatibilities between C++ and GLSL, GLM defines the function not but not_ instead.
///
/// @tparam vecType Boolean vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/not.xml">GLSL not man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.7 Vector Relational Functions</a>
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> not_(vecType<bool, P> const & v);
/// @}
}//namespace glm
#include "func_vector_relational.inl"

View file

@ -0,0 +1,105 @@
/// @ref core
/// @file glm/detail/func_vector_relational.inl
#include <limits>
namespace glm
{
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> lessThan(vecType<T, P> const & x, vecType<T, P> const & y)
{
assert(x.length() == y.length());
vecType<bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] < y[i];
return Result;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> lessThanEqual(vecType<T, P> const & x, vecType<T, P> const & y)
{
assert(x.length() == y.length());
vecType<bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] <= y[i];
return Result;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> greaterThan(vecType<T, P> const & x, vecType<T, P> const & y)
{
assert(x.length() == y.length());
vecType<bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] > y[i];
return Result;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> greaterThanEqual(vecType<T, P> const & x, vecType<T, P> const & y)
{
assert(x.length() == y.length());
vecType<bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] >= y[i];
return Result;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> equal(vecType<T, P> const & x, vecType<T, P> const & y)
{
assert(x.length() == y.length());
vecType<bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] == y[i];
return Result;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> notEqual(vecType<T, P> const & x, vecType<T, P> const & y)
{
assert(x.length() == y.length());
vecType<bool, P> Result(uninitialize);
for(length_t i = 0; i < x.length(); ++i)
Result[i] = x[i] != y[i];
return Result;
}
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER bool any(vecType<bool, P> const & v)
{
bool Result = false;
for(length_t i = 0; i < v.length(); ++i)
Result = Result || v[i];
return Result;
}
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER bool all(vecType<bool, P> const & v)
{
bool Result = true;
for(length_t i = 0; i < v.length(); ++i)
Result = Result && v[i];
return Result;
}
template <precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> not_(vecType<bool, P> const & v)
{
vecType<bool, P> Result(uninitialize);
for(length_t i = 0; i < v.length(); ++i)
Result[i] = !v[i];
return Result;
}
}//namespace glm
#if GLM_ARCH != GLM_ARCH_PURE && GLM_HAS_UNRESTRICTED_UNIONS
# include "func_vector_relational_simd.inl"
#endif

View file

@ -0,0 +1,9 @@
/// @ref core
/// @file glm/detail/func_vector_relational_simd.inl
namespace glm{
namespace detail
{
}//namespace detail
}//namespace glm

View file

@ -0,0 +1,257 @@
/// @ref core
/// @file glm/glm.cpp
#include <glm/glm.hpp>
#include <glm/gtc/quaternion.hpp>
#include <glm/gtx/dual_quaternion.hpp>
namespace glm
{
// tvec1 type explicit instantiation
template struct tvec1<uint8, lowp>;
template struct tvec1<uint16, lowp>;
template struct tvec1<uint32, lowp>;
template struct tvec1<uint64, lowp>;
template struct tvec1<int8, lowp>;
template struct tvec1<int16, lowp>;
template struct tvec1<int32, lowp>;
template struct tvec1<int64, lowp>;
template struct tvec1<float32, lowp>;
template struct tvec1<float64, lowp>;
template struct tvec1<uint8, mediump>;
template struct tvec1<uint16, mediump>;
template struct tvec1<uint32, mediump>;
template struct tvec1<uint64, mediump>;
template struct tvec1<int8, mediump>;
template struct tvec1<int16, mediump>;
template struct tvec1<int32, mediump>;
template struct tvec1<int64, mediump>;
template struct tvec1<float32, mediump>;
template struct tvec1<float64, mediump>;
template struct tvec1<uint8, highp>;
template struct tvec1<uint16, highp>;
template struct tvec1<uint32, highp>;
template struct tvec1<uint64, highp>;
template struct tvec1<int8, highp>;
template struct tvec1<int16, highp>;
template struct tvec1<int32, highp>;
template struct tvec1<int64, highp>;
template struct tvec1<float32, highp>;
template struct tvec1<float64, highp>;
// tvec2 type explicit instantiation
template struct tvec2<uint8, lowp>;
template struct tvec2<uint16, lowp>;
template struct tvec2<uint32, lowp>;
template struct tvec2<uint64, lowp>;
template struct tvec2<int8, lowp>;
template struct tvec2<int16, lowp>;
template struct tvec2<int32, lowp>;
template struct tvec2<int64, lowp>;
template struct tvec2<float32, lowp>;
template struct tvec2<float64, lowp>;
template struct tvec2<uint8, mediump>;
template struct tvec2<uint16, mediump>;
template struct tvec2<uint32, mediump>;
template struct tvec2<uint64, mediump>;
template struct tvec2<int8, mediump>;
template struct tvec2<int16, mediump>;
template struct tvec2<int32, mediump>;
template struct tvec2<int64, mediump>;
template struct tvec2<float32, mediump>;
template struct tvec2<float64, mediump>;
template struct tvec2<uint8, highp>;
template struct tvec2<uint16, highp>;
template struct tvec2<uint32, highp>;
template struct tvec2<uint64, highp>;
template struct tvec2<int8, highp>;
template struct tvec2<int16, highp>;
template struct tvec2<int32, highp>;
template struct tvec2<int64, highp>;
template struct tvec2<float32, highp>;
template struct tvec2<float64, highp>;
// tvec3 type explicit instantiation
template struct tvec3<uint8, lowp>;
template struct tvec3<uint16, lowp>;
template struct tvec3<uint32, lowp>;
template struct tvec3<uint64, lowp>;
template struct tvec3<int8, lowp>;
template struct tvec3<int16, lowp>;
template struct tvec3<int32, lowp>;
template struct tvec3<int64, lowp>;
template struct tvec3<float32, lowp>;
template struct tvec3<float64, lowp>;
template struct tvec3<uint8, mediump>;
template struct tvec3<uint16, mediump>;
template struct tvec3<uint32, mediump>;
template struct tvec3<uint64, mediump>;
template struct tvec3<int8, mediump>;
template struct tvec3<int16, mediump>;
template struct tvec3<int32, mediump>;
template struct tvec3<int64, mediump>;
template struct tvec3<float32, mediump>;
template struct tvec3<float64, mediump>;
template struct tvec3<uint8, highp>;
template struct tvec3<uint16, highp>;
template struct tvec3<uint32, highp>;
template struct tvec3<uint64, highp>;
template struct tvec3<int8, highp>;
template struct tvec3<int16, highp>;
template struct tvec3<int32, highp>;
template struct tvec3<int64, highp>;
template struct tvec3<float32, highp>;
template struct tvec3<float64, highp>;
// tvec4 type explicit instantiation
template struct tvec4<uint8, lowp>;
template struct tvec4<uint16, lowp>;
template struct tvec4<uint32, lowp>;
template struct tvec4<uint64, lowp>;
template struct tvec4<int8, lowp>;
template struct tvec4<int16, lowp>;
template struct tvec4<int32, lowp>;
template struct tvec4<int64, lowp>;
template struct tvec4<float32, lowp>;
template struct tvec4<float64, lowp>;
template struct tvec4<uint8, mediump>;
template struct tvec4<uint16, mediump>;
template struct tvec4<uint32, mediump>;
template struct tvec4<uint64, mediump>;
template struct tvec4<int8, mediump>;
template struct tvec4<int16, mediump>;
template struct tvec4<int32, mediump>;
template struct tvec4<int64, mediump>;
template struct tvec4<float32, mediump>;
template struct tvec4<float64, mediump>;
template struct tvec4<uint8, highp>;
template struct tvec4<uint16, highp>;
template struct tvec4<uint32, highp>;
template struct tvec4<uint64, highp>;
template struct tvec4<int8, highp>;
template struct tvec4<int16, highp>;
template struct tvec4<int32, highp>;
template struct tvec4<int64, highp>;
template struct tvec4<float32, highp>;
template struct tvec4<float64, highp>;
// tmat2x2 type explicit instantiation
template struct tmat2x2<float32, lowp>;
template struct tmat2x2<float64, lowp>;
template struct tmat2x2<float32, mediump>;
template struct tmat2x2<float64, mediump>;
template struct tmat2x2<float32, highp>;
template struct tmat2x2<float64, highp>;
// tmat2x3 type explicit instantiation
template struct tmat2x3<float32, lowp>;
template struct tmat2x3<float64, lowp>;
template struct tmat2x3<float32, mediump>;
template struct tmat2x3<float64, mediump>;
template struct tmat2x3<float32, highp>;
template struct tmat2x3<float64, highp>;
// tmat2x4 type explicit instantiation
template struct tmat2x4<float32, lowp>;
template struct tmat2x4<float64, lowp>;
template struct tmat2x4<float32, mediump>;
template struct tmat2x4<float64, mediump>;
template struct tmat2x4<float32, highp>;
template struct tmat2x4<float64, highp>;
// tmat3x2 type explicit instantiation
template struct tmat3x2<float32, lowp>;
template struct tmat3x2<float64, lowp>;
template struct tmat3x2<float32, mediump>;
template struct tmat3x2<float64, mediump>;
template struct tmat3x2<float32, highp>;
template struct tmat3x2<float64, highp>;
// tmat3x3 type explicit instantiation
template struct tmat3x3<float32, lowp>;
template struct tmat3x3<float64, lowp>;
template struct tmat3x3<float32, mediump>;
template struct tmat3x3<float64, mediump>;
template struct tmat3x3<float32, highp>;
template struct tmat3x3<float64, highp>;
// tmat3x4 type explicit instantiation
template struct tmat3x4<float32, lowp>;
template struct tmat3x4<float64, lowp>;
template struct tmat3x4<float32, mediump>;
template struct tmat3x4<float64, mediump>;
template struct tmat3x4<float32, highp>;
template struct tmat3x4<float64, highp>;
// tmat4x2 type explicit instantiation
template struct tmat4x2<float32, lowp>;
template struct tmat4x2<float64, lowp>;
template struct tmat4x2<float32, mediump>;
template struct tmat4x2<float64, mediump>;
template struct tmat4x2<float32, highp>;
template struct tmat4x2<float64, highp>;
// tmat4x3 type explicit instantiation
template struct tmat4x3<float32, lowp>;
template struct tmat4x3<float64, lowp>;
template struct tmat4x3<float32, mediump>;
template struct tmat4x3<float64, mediump>;
template struct tmat4x3<float32, highp>;
template struct tmat4x3<float64, highp>;
// tmat4x4 type explicit instantiation
template struct tmat4x4<float32, lowp>;
template struct tmat4x4<float64, lowp>;
template struct tmat4x4<float32, mediump>;
template struct tmat4x4<float64, mediump>;
template struct tmat4x4<float32, highp>;
template struct tmat4x4<float64, highp>;
// tquat type explicit instantiation
template struct tquat<float32, lowp>;
template struct tquat<float64, lowp>;
template struct tquat<float32, mediump>;
template struct tquat<float64, mediump>;
template struct tquat<float32, highp>;
template struct tquat<float64, highp>;
//tdualquat type explicit instantiation
template struct tdualquat<float32, lowp>;
template struct tdualquat<float64, lowp>;
template struct tdualquat<float32, mediump>;
template struct tdualquat<float64, mediump>;
template struct tdualquat<float32, highp>;
template struct tdualquat<float64, highp>;
}//namespace glm

View file

@ -0,0 +1,63 @@
/// @ref core
/// @file glm/detail/precision.hpp
#pragma once
#include "setup.hpp"
namespace glm
{
enum precision
{
packed_highp,
packed_mediump,
packed_lowp,
# if GLM_HAS_ALIGNED_TYPE
aligned_highp,
aligned_mediump,
aligned_lowp,
aligned = aligned_highp,
# endif
highp = packed_highp,
mediump = packed_mediump,
lowp = packed_lowp,
packed = packed_highp,
# if GLM_HAS_ALIGNED_TYPE && defined(GLM_FORCE_ALIGNED)
defaultp = aligned_highp
# else
defaultp = highp
# endif
};
namespace detail
{
template <glm::precision P>
struct is_aligned
{
static const bool value = false;
};
# if GLM_HAS_ALIGNED_TYPE
template<>
struct is_aligned<glm::aligned_lowp>
{
static const bool value = true;
};
template<>
struct is_aligned<glm::aligned_mediump>
{
static const bool value = true;
};
template<>
struct is_aligned<glm::aligned_highp>
{
static const bool value = true;
};
# endif
}//namespace detail
}//namespace glm

View file

@ -0,0 +1,828 @@
/// @ref core
/// @file glm/detail/setup.hpp
#pragma once
#if (defined(GLM_FORCE_SWIZZLE) || defined(GLM_SWIZZLE)) && defined(GLM_FORCE_UNRESTRICTED_GENTYPE)
# error "Both GLM_FORCE_SWIZZLE and GLM_FORCE_UNRESTRICTED_GENTYPE can't be defined at the same time"
#endif
///////////////////////////////////////////////////////////////////////////////////
// Messages
#ifdef GLM_MESSAGES
# pragma message("GLM: GLM_MESSAGES is deprecated, use GLM_FORCE_MESSAGES instead")
#endif
#define GLM_MESSAGES_ENABLED 1
#define GLM_MESSAGES_DISABLE 0
#if defined(GLM_FORCE_MESSAGES) || defined(GLM_MESSAGES)
# undef GLM_MESSAGES
# define GLM_MESSAGES GLM_MESSAGES_ENABLED
#else
# undef GLM_MESSAGES
# define GLM_MESSAGES GLM_MESSAGES_DISABLE
#endif
#include <cassert>
#include <cstddef>
#include "../simd/platform.h"
///////////////////////////////////////////////////////////////////////////////////
// Version
#define GLM_VERSION 98
#define GLM_VERSION_MAJOR 0
#define GLM_VERSION_MINOR 9
#define GLM_VERSION_PATCH 8
#define GLM_VERSION_REVISION 4
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_VERSION_DISPLAYED)
# define GLM_MESSAGE_VERSION_DISPLAYED
# pragma message ("GLM: version 0.9.8.4")
#endif//GLM_MESSAGES
// Report compiler detection
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_COMPILER_DISPLAYED)
# define GLM_MESSAGE_COMPILER_DISPLAYED
# if GLM_COMPILER & GLM_COMPILER_CUDA
# pragma message("GLM: CUDA compiler detected")
# elif GLM_COMPILER & GLM_COMPILER_VC
# pragma message("GLM: Visual C++ compiler detected")
# elif GLM_COMPILER & GLM_COMPILER_CLANG
# pragma message("GLM: Clang compiler detected")
# elif GLM_COMPILER & GLM_COMPILER_INTEL
# pragma message("GLM: Intel Compiler detected")
# elif GLM_COMPILER & GLM_COMPILER_GCC
# pragma message("GLM: GCC compiler detected")
# else
# pragma message("GLM: Compiler not detected")
# endif
#endif//GLM_MESSAGES
///////////////////////////////////////////////////////////////////////////////////
// Build model
#if defined(__arch64__) || defined(__LP64__) || defined(_M_X64) || defined(__ppc64__) || defined(__x86_64__)
# define GLM_MODEL GLM_MODEL_64
#elif defined(__i386__) || defined(__ppc__)
# define GLM_MODEL GLM_MODEL_32
#else
# define GLM_MODEL GLM_MODEL_32
#endif//
#if !defined(GLM_MODEL) && GLM_COMPILER != 0
# error "GLM_MODEL undefined, your compiler may not be supported by GLM. Add #define GLM_MODEL 0 to ignore this message."
#endif//GLM_MODEL
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_MODEL_DISPLAYED)
# define GLM_MESSAGE_MODEL_DISPLAYED
# if(GLM_MODEL == GLM_MODEL_64)
# pragma message("GLM: 64 bits model")
# elif(GLM_MODEL == GLM_MODEL_32)
# pragma message("GLM: 32 bits model")
# endif//GLM_MODEL
#endif//GLM_MESSAGES
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_ARCH_DISPLAYED)
# define GLM_MESSAGE_ARCH_DISPLAYED
# if(GLM_ARCH == GLM_ARCH_PURE)
# pragma message("GLM: Platform independent code")
# elif(GLM_ARCH == GLM_ARCH_AVX2)
# pragma message("GLM: AVX2 instruction set")
# elif(GLM_ARCH == GLM_ARCH_AVX)
# pragma message("GLM: AVX instruction set")
# elif(GLM_ARCH == GLM_ARCH_SSE42)
# pragma message("GLM: SSE4.2 instruction set")
# elif(GLM_ARCH == GLM_ARCH_SSE41)
# pragma message("GLM: SSE4.1 instruction set")
# elif(GLM_ARCH == GLM_ARCH_SSSE3)
# pragma message("GLM: SSSE3 instruction set")
# elif(GLM_ARCH == GLM_ARCH_SSE3)
# pragma message("GLM: SSE3 instruction set")
# elif(GLM_ARCH == GLM_ARCH_SSE2)
# pragma message("GLM: SSE2 instruction set")
# elif(GLM_ARCH == GLM_ARCH_X86)
# pragma message("GLM: x86 instruction set")
# elif(GLM_ARCH == GLM_ARCH_NEON)
# pragma message("GLM: NEON instruction set")
# elif(GLM_ARCH == GLM_ARCH_ARM)
# pragma message("GLM: ARM instruction set")
# elif(GLM_ARCH == GLM_ARCH_MIPS)
# pragma message("GLM: MIPS instruction set")
# elif(GLM_ARCH == GLM_ARCH_PPC)
# pragma message("GLM: PowerPC architechture")
# endif//GLM_ARCH
#endif//GLM_MESSAGES
///////////////////////////////////////////////////////////////////////////////////
// C++ Version
// User defines: GLM_FORCE_CXX98, GLM_FORCE_CXX03, GLM_FORCE_CXX11, GLM_FORCE_CXX14
#define GLM_LANG_CXX98_FLAG (1 << 1)
#define GLM_LANG_CXX03_FLAG (1 << 2)
#define GLM_LANG_CXX0X_FLAG (1 << 3)
#define GLM_LANG_CXX11_FLAG (1 << 4)
#define GLM_LANG_CXX1Y_FLAG (1 << 5)
#define GLM_LANG_CXX14_FLAG (1 << 6)
#define GLM_LANG_CXX1Z_FLAG (1 << 7)
#define GLM_LANG_CXXMS_FLAG (1 << 8)
#define GLM_LANG_CXXGNU_FLAG (1 << 9)
#define GLM_LANG_CXX98 GLM_LANG_CXX98_FLAG
#define GLM_LANG_CXX03 (GLM_LANG_CXX98 | GLM_LANG_CXX03_FLAG)
#define GLM_LANG_CXX0X (GLM_LANG_CXX03 | GLM_LANG_CXX0X_FLAG)
#define GLM_LANG_CXX11 (GLM_LANG_CXX0X | GLM_LANG_CXX11_FLAG)
#define GLM_LANG_CXX1Y (GLM_LANG_CXX11 | GLM_LANG_CXX1Y_FLAG)
#define GLM_LANG_CXX14 (GLM_LANG_CXX1Y | GLM_LANG_CXX14_FLAG)
#define GLM_LANG_CXX1Z (GLM_LANG_CXX14 | GLM_LANG_CXX1Z_FLAG)
#define GLM_LANG_CXXMS GLM_LANG_CXXMS_FLAG
#define GLM_LANG_CXXGNU GLM_LANG_CXXGNU_FLAG
#if defined(GLM_FORCE_CXX14)
# if((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER <= GLM_COMPILER_GCC50)) || ((GLM_COMPILER & GLM_COMPILER_CLANG) && (GLM_COMPILER <= GLM_COMPILER_CLANG34))
# pragma message("GLM: Using GLM_FORCE_CXX14 with a compiler that doesn't fully support C++14")
# elif GLM_COMPILER & GLM_COMPILER_VC
# pragma message("GLM: Using GLM_FORCE_CXX14 but there is no known version of Visual C++ compiler that fully supports C++14")
# elif GLM_COMPILER & GLM_COMPILER_INTEL
# pragma message("GLM: Using GLM_FORCE_CXX14 but there is no known version of ICC compiler that fully supports C++14")
# endif
# define GLM_LANG GLM_LANG_CXX14
# define GLM_LANG_STL11_FORCED
#elif defined(GLM_FORCE_CXX11)
# if((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER <= GLM_COMPILER_GCC48)) || ((GLM_COMPILER & GLM_COMPILER_CLANG) && (GLM_COMPILER <= GLM_COMPILER_CLANG33))
# pragma message("GLM: Using GLM_FORCE_CXX11 with a compiler that doesn't fully support C++11")
# elif GLM_COMPILER & GLM_COMPILER_VC
# pragma message("GLM: Using GLM_FORCE_CXX11 but there is no known version of Visual C++ compiler that fully supports C++11")
# elif GLM_COMPILER & GLM_COMPILER_INTEL
# pragma message("GLM: Using GLM_FORCE_CXX11 but there is no known version of ICC compiler that fully supports C++11")
# endif
# define GLM_LANG GLM_LANG_CXX11
# define GLM_LANG_STL11_FORCED
#elif defined(GLM_FORCE_CXX03)
# define GLM_LANG GLM_LANG_CXX03
#elif defined(GLM_FORCE_CXX98)
# define GLM_LANG GLM_LANG_CXX98
#else
# if GLM_COMPILER & GLM_COMPILER_CLANG
# if __cplusplus >= 201402L // GLM_COMPILER_CLANG34 + -std=c++14
# define GLM_LANG GLM_LANG_CXX14
# elif __has_feature(cxx_decltype_auto) && __has_feature(cxx_aggregate_nsdmi) // GLM_COMPILER_CLANG33 + -std=c++1y
# define GLM_LANG GLM_LANG_CXX1Y
# elif __cplusplus >= 201103L // GLM_COMPILER_CLANG33 + -std=c++11
# define GLM_LANG GLM_LANG_CXX11
# elif __has_feature(cxx_static_assert) // GLM_COMPILER_CLANG29 + -std=c++11
# define GLM_LANG GLM_LANG_CXX0X
# elif __cplusplus >= 199711L
# define GLM_LANG GLM_LANG_CXX98
# else
# define GLM_LANG GLM_LANG_CXX
# endif
# elif GLM_COMPILER & GLM_COMPILER_GCC
# if __cplusplus >= 201402L
# define GLM_LANG GLM_LANG_CXX14
# elif __cplusplus >= 201103L
# define GLM_LANG GLM_LANG_CXX11
# elif defined(__GXX_EXPERIMENTAL_CXX0X__)
# define GLM_LANG GLM_LANG_CXX0X
# else
# define GLM_LANG GLM_LANG_CXX98
# endif
# elif GLM_COMPILER & GLM_COMPILER_VC
# ifdef _MSC_EXTENSIONS
# if __cplusplus >= 201402L
# define GLM_LANG (GLM_LANG_CXX14 | GLM_LANG_CXXMS_FLAG)
//# elif GLM_COMPILER >= GLM_COMPILER_VC14
//# define GLM_LANG (GLM_LANG_CXX1Y | GLM_LANG_CXXMS_FLAG)
# elif __cplusplus >= 201103L
# define GLM_LANG (GLM_LANG_CXX11 | GLM_LANG_CXXMS_FLAG)
# elif GLM_COMPILER >= GLM_COMPILER_VC10
# define GLM_LANG (GLM_LANG_CXX0X | GLM_LANG_CXXMS_FLAG)
# elif __cplusplus >= 199711L
# define GLM_LANG (GLM_LANG_CXX98 | GLM_LANG_CXXMS_FLAG)
# else
# define GLM_LANG (GLM_LANG_CXX | GLM_LANG_CXXMS_FLAG)
# endif
# else
# if __cplusplus >= 201402L
# define GLM_LANG GLM_LANG_CXX14
# elif __cplusplus >= 201103L
# define GLM_LANG GLM_LANG_CXX11
# elif GLM_COMPILER >= GLM_COMPILER_VC10
# define GLM_LANG GLM_LANG_CXX0X
# elif __cplusplus >= 199711L
# define GLM_LANG GLM_LANG_CXX98
# else
# define GLM_LANG GLM_LANG_CXX
# endif
# endif
# elif GLM_COMPILER & GLM_COMPILER_INTEL
# ifdef _MSC_EXTENSIONS
# define GLM_MSC_EXT GLM_LANG_CXXMS_FLAG
# else
# define GLM_MSC_EXT 0
# endif
# if __cplusplus >= 201402L
# define GLM_LANG (GLM_LANG_CXX14 | GLM_MSC_EXT)
# elif __cplusplus >= 201103L
# define GLM_LANG (GLM_LANG_CXX11 | GLM_MSC_EXT)
# elif __INTEL_CXX11_MODE__
# define GLM_LANG (GLM_LANG_CXX0X | GLM_MSC_EXT)
# elif __cplusplus >= 199711L
# define GLM_LANG (GLM_LANG_CXX98 | GLM_MSC_EXT)
# else
# define GLM_LANG (GLM_LANG_CXX | GLM_MSC_EXT)
# endif
# elif GLM_COMPILER & GLM_COMPILER_CUDA
# ifdef _MSC_EXTENSIONS
# define GLM_MSC_EXT GLM_LANG_CXXMS_FLAG
# else
# define GLM_MSC_EXT 0
# endif
# if GLM_COMPILER >= GLM_COMPILER_CUDA75
# define GLM_LANG (GLM_LANG_CXX0X | GLM_MSC_EXT)
# else
# define GLM_LANG (GLM_LANG_CXX98 | GLM_MSC_EXT)
# endif
# else // Unknown compiler
# if __cplusplus >= 201402L
# define GLM_LANG GLM_LANG_CXX14
# elif __cplusplus >= 201103L
# define GLM_LANG GLM_LANG_CXX11
# elif __cplusplus >= 199711L
# define GLM_LANG GLM_LANG_CXX98
# else
# define GLM_LANG GLM_LANG_CXX // Good luck with that!
# endif
# ifndef GLM_FORCE_PURE
# define GLM_FORCE_PURE
# endif
# endif
#endif
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_LANG_DISPLAYED)
# define GLM_MESSAGE_LANG_DISPLAYED
# if GLM_LANG & GLM_LANG_CXX1Z_FLAG
# pragma message("GLM: C++1z")
# elif GLM_LANG & GLM_LANG_CXX14_FLAG
# pragma message("GLM: C++14")
# elif GLM_LANG & GLM_LANG_CXX1Y_FLAG
# pragma message("GLM: C++1y")
# elif GLM_LANG & GLM_LANG_CXX11_FLAG
# pragma message("GLM: C++11")
# elif GLM_LANG & GLM_LANG_CXX0X_FLAG
# pragma message("GLM: C++0x")
# elif GLM_LANG & GLM_LANG_CXX03_FLAG
# pragma message("GLM: C++03")
# elif GLM_LANG & GLM_LANG_CXX98_FLAG
# pragma message("GLM: C++98")
# else
# pragma message("GLM: C++ language undetected")
# endif//GLM_LANG
# if GLM_LANG & (GLM_LANG_CXXGNU_FLAG | GLM_LANG_CXXMS_FLAG)
# pragma message("GLM: Language extensions enabled")
# endif//GLM_LANG
#endif//GLM_MESSAGES
///////////////////////////////////////////////////////////////////////////////////
// Has of C++ features
// http://clang.llvm.org/cxx_status.html
// http://gcc.gnu.org/projects/cxx0x.html
// http://msdn.microsoft.com/en-us/library/vstudio/hh567368(v=vs.120).aspx
// Android has multiple STLs but C++11 STL detection doesn't always work #284 #564
#if GLM_PLATFORM == GLM_PLATFORM_ANDROID && !defined(GLM_LANG_STL11_FORCED)
# define GLM_HAS_CXX11_STL 0
#elif GLM_COMPILER & GLM_COMPILER_CLANG
# if (defined(_LIBCPP_VERSION) && GLM_LANG & GLM_LANG_CXX11_FLAG) || defined(GLM_LANG_STL11_FORCED)
# define GLM_HAS_CXX11_STL 1
# else
# define GLM_HAS_CXX11_STL 0
# endif
#else
# define GLM_HAS_CXX11_STL ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC48)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \
((GLM_PLATFORM != GLM_PLATFORM_WINDOWS) && (GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL15))))
#endif
// N1720
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_STATIC_ASSERT __has_feature(cxx_static_assert)
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_STATIC_ASSERT 1
#else
# define GLM_HAS_STATIC_ASSERT ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_GCC)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA)) || \
((GLM_COMPILER & GLM_COMPILER_VC))))
#endif
// N1988
#if GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_EXTENDED_INTEGER_TYPE 1
#else
# define GLM_HAS_EXTENDED_INTEGER_TYPE (\
((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC11)) || \
((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (GLM_COMPILER & GLM_COMPILER_CUDA)) || \
((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (GLM_COMPILER & GLM_COMPILER_GCC)) || \
((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (GLM_COMPILER & GLM_COMPILER_CLANG)))
#endif
// N2235
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_CONSTEXPR __has_feature(cxx_constexpr)
# define GLM_HAS_CONSTEXPR_PARTIAL GLM_HAS_CONSTEXPR
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_CONSTEXPR 1
# define GLM_HAS_CONSTEXPR_PARTIAL GLM_HAS_CONSTEXPR
#else
# define GLM_HAS_CONSTEXPR ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC15)) || \
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC48)))) // GCC 4.6 support constexpr but there is a compiler bug causing a crash
# define GLM_HAS_CONSTEXPR_PARTIAL (GLM_HAS_CONSTEXPR || ((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC14)))
#endif
// N2672
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_INITIALIZER_LISTS __has_feature(cxx_generalized_initializers)
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_INITIALIZER_LISTS 1
#else
# define GLM_HAS_INITIALIZER_LISTS ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_GCC)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA) && (GLM_COMPILER >= GLM_COMPILER_CUDA75))))
#endif
// N2544 Unrestricted unions http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2544.pdf
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_UNRESTRICTED_UNIONS __has_feature(cxx_unrestricted_unions)
#elif GLM_LANG & (GLM_LANG_CXX11_FLAG | GLM_LANG_CXXMS_FLAG)
# define GLM_HAS_UNRESTRICTED_UNIONS 1
#else
# define GLM_HAS_UNRESTRICTED_UNIONS (GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_LANG & GLM_LANG_CXXMS_FLAG)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA) && (GLM_COMPILER >= GLM_COMPILER_CUDA75)) || \
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC46)))
#endif
// N2346
#if defined(GLM_FORCE_UNRESTRICTED_GENTYPE)
# define GLM_HAS_DEFAULTED_FUNCTIONS 0
#elif GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_DEFAULTED_FUNCTIONS __has_feature(cxx_defaulted_functions)
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_DEFAULTED_FUNCTIONS 1
#else
# define GLM_HAS_DEFAULTED_FUNCTIONS ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_GCC)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \
((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL12)) || \
(GLM_COMPILER & GLM_COMPILER_CUDA)))
#endif
// N2118
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_RVALUE_REFERENCES __has_feature(cxx_rvalue_references)
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_RVALUE_REFERENCES 1
#else
# define GLM_HAS_RVALUE_REFERENCES ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_GCC)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC11)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA) && (GLM_COMPILER >= GLM_COMPILER_CUDA50))))
#endif
// N2437 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_EXPLICIT_CONVERSION_OPERATORS __has_feature(cxx_explicit_conversions)
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_EXPLICIT_CONVERSION_OPERATORS 1
#else
# define GLM_HAS_EXPLICIT_CONVERSION_OPERATORS ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC45)) || \
((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL14)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA) && (GLM_COMPILER >= GLM_COMPILER_CUDA50))))
#endif
// N2258 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2258.pdf
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_TEMPLATE_ALIASES __has_feature(cxx_alias_templates)
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_TEMPLATE_ALIASES 1
#else
# define GLM_HAS_TEMPLATE_ALIASES ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL12_1)) || \
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC47)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA) && (GLM_COMPILER >= GLM_COMPILER_CUDA50))))
#endif
// N2930 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2930.html
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_RANGE_FOR __has_feature(cxx_range_for)
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_RANGE_FOR 1
#else
# define GLM_HAS_RANGE_FOR ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC46)) || \
((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL13)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC11)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA) && (GLM_COMPILER >= GLM_COMPILER_CUDA50))))
#endif
// N2341 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2341.pdf
#if GLM_COMPILER & GLM_COMPILER_CLANG
# define GLM_HAS_ALIGNOF __has_feature(c_alignof)
#elif GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_ALIGNOF 1
#else
# define GLM_HAS_ALIGNOF ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC48)) || \
((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_COMPILER >= GLM_COMPILER_INTEL15)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC14)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA) && (GLM_COMPILER >= GLM_COMPILER_CUDA70))))
#endif
#define GLM_HAS_ONLY_XYZW ((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER < GLM_COMPILER_GCC46))
#if GLM_HAS_ONLY_XYZW
# pragma message("GLM: GCC older than 4.6 has a bug presenting the use of rgba and stpq components")
#endif
//
#if GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_ASSIGNABLE 1
#else
# define GLM_HAS_ASSIGNABLE ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC15)) || \
((GLM_COMPILER & GLM_COMPILER_GCC) && (GLM_COMPILER >= GLM_COMPILER_GCC49))))
#endif
//
#define GLM_HAS_TRIVIAL_QUERIES 0
//
#if GLM_LANG & GLM_LANG_CXX11_FLAG
# define GLM_HAS_MAKE_SIGNED 1
#else
# define GLM_HAS_MAKE_SIGNED ((GLM_LANG & GLM_LANG_CXX0X_FLAG) && (\
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC12)) || \
((GLM_COMPILER & GLM_COMPILER_CUDA) && (GLM_COMPILER >= GLM_COMPILER_CUDA50))))
#endif
#if GLM_ARCH == GLM_ARCH_PURE
# define GLM_HAS_BITSCAN_WINDOWS 0
#else
# define GLM_HAS_BITSCAN_WINDOWS ((GLM_PLATFORM & GLM_PLATFORM_WINDOWS) && (\
((GLM_COMPILER & GLM_COMPILER_INTEL)) || \
((GLM_COMPILER & GLM_COMPILER_VC) && (GLM_COMPILER >= GLM_COMPILER_VC14) && (GLM_ARCH & GLM_ARCH_X86_BIT))))
#endif
// OpenMP
#ifdef _OPENMP
# if GLM_COMPILER & GLM_COMPILER_GCC
# if GLM_COMPILER >= GLM_COMPILER_GCC61
# define GLM_HAS_OPENMP 45
# elif GLM_COMPILER >= GLM_COMPILER_GCC49
# define GLM_HAS_OPENMP 40
# elif GLM_COMPILER >= GLM_COMPILER_GCC47
# define GLM_HAS_OPENMP 31
# elif GLM_COMPILER >= GLM_COMPILER_GCC44
# define GLM_HAS_OPENMP 30
# elif GLM_COMPILER >= GLM_COMPILER_GCC42
# define GLM_HAS_OPENMP 25
# else
# define GLM_HAS_OPENMP 0
# endif
# elif GLM_COMPILER & GLM_COMPILER_CLANG
# if GLM_COMPILER >= GLM_COMPILER_CLANG38
# define GLM_HAS_OPENMP 31
# else
# define GLM_HAS_OPENMP 0
# endif
# elif GLM_COMPILER & GLM_COMPILER_VC
# if GLM_COMPILER >= GLM_COMPILER_VC10
# define GLM_HAS_OPENMP 20
# else
# define GLM_HAS_OPENMP 0
# endif
# elif GLM_COMPILER & GLM_COMPILER_INTEL
# if GLM_COMPILER >= GLM_COMPILER_INTEL16
# define GLM_HAS_OPENMP 40
# elif GLM_COMPILER >= GLM_COMPILER_INTEL12
# define GLM_HAS_OPENMP 31
# else
# define GLM_HAS_OPENMP 0
# endif
# else
# define GLM_HAS_OPENMP 0
# endif// GLM_COMPILER & GLM_COMPILER_VC
#endif
///////////////////////////////////////////////////////////////////////////////////
// Static assert
#if GLM_HAS_STATIC_ASSERT
# define GLM_STATIC_ASSERT(x, message) static_assert(x, message)
#elif defined(BOOST_STATIC_ASSERT)
# define GLM_STATIC_ASSERT(x, message) BOOST_STATIC_ASSERT(x)
#elif GLM_COMPILER & GLM_COMPILER_VC
# define GLM_STATIC_ASSERT(x, message) typedef char __CASSERT__##__LINE__[(x) ? 1 : -1]
#else
# define GLM_STATIC_ASSERT(x, message)
# define GLM_STATIC_ASSERT_NULL
#endif//GLM_LANG
///////////////////////////////////////////////////////////////////////////////////
// Qualifiers
#if GLM_COMPILER & GLM_COMPILER_CUDA
# define GLM_CUDA_FUNC_DEF __device__ __host__
# define GLM_CUDA_FUNC_DECL __device__ __host__
#else
# define GLM_CUDA_FUNC_DEF
# define GLM_CUDA_FUNC_DECL
#endif
#if GLM_COMPILER & GLM_COMPILER_GCC
# define GLM_VAR_USED __attribute__ ((unused))
#else
# define GLM_VAR_USED
#endif
#if defined(GLM_FORCE_INLINE)
# if GLM_COMPILER & GLM_COMPILER_VC
# define GLM_INLINE __forceinline
# define GLM_NEVER_INLINE __declspec((noinline))
# elif GLM_COMPILER & (GLM_COMPILER_GCC | GLM_COMPILER_CLANG)
# define GLM_INLINE inline __attribute__((__always_inline__))
# define GLM_NEVER_INLINE __attribute__((__noinline__))
# elif GLM_COMPILER & GLM_COMPILER_CUDA
# define GLM_INLINE __forceinline__
# define GLM_NEVER_INLINE __noinline__
# else
# define GLM_INLINE inline
# define GLM_NEVER_INLINE
# endif//GLM_COMPILER
#else
# define GLM_INLINE inline
# define GLM_NEVER_INLINE
#endif//defined(GLM_FORCE_INLINE)
#define GLM_FUNC_DECL GLM_CUDA_FUNC_DECL
#define GLM_FUNC_QUALIFIER GLM_CUDA_FUNC_DEF GLM_INLINE
///////////////////////////////////////////////////////////////////////////////////
// Swizzle operators
// User defines: GLM_FORCE_SWIZZLE
#ifdef GLM_SWIZZLE
# pragma message("GLM: GLM_SWIZZLE is deprecated, use GLM_FORCE_SWIZZLE instead")
#endif
#define GLM_SWIZZLE_ENABLED 1
#define GLM_SWIZZLE_DISABLE 0
#if defined(GLM_FORCE_SWIZZLE) || defined(GLM_SWIZZLE)
# undef GLM_SWIZZLE
# define GLM_SWIZZLE GLM_SWIZZLE_ENABLED
#else
# undef GLM_SWIZZLE
# define GLM_SWIZZLE GLM_SWIZZLE_DISABLE
#endif
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_SWIZZLE_DISPLAYED)
# define GLM_MESSAGE_SWIZZLE_DISPLAYED
# if GLM_SWIZZLE == GLM_SWIZZLE_ENABLED
# pragma message("GLM: Swizzling operators enabled")
# else
# pragma message("GLM: Swizzling operators disabled, #define GLM_SWIZZLE to enable swizzle operators")
# endif
#endif//GLM_MESSAGES
///////////////////////////////////////////////////////////////////////////////////
// Allows using not basic types as genType
// #define GLM_FORCE_UNRESTRICTED_GENTYPE
#ifdef GLM_FORCE_UNRESTRICTED_GENTYPE
# define GLM_UNRESTRICTED_GENTYPE 1
#else
# define GLM_UNRESTRICTED_GENTYPE 0
#endif
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_UNRESTRICTED_GENTYPE_DISPLAYED)
# define GLM_MESSAGE_UNRESTRICTED_GENTYPE_DISPLAYED
# ifdef GLM_FORCE_UNRESTRICTED_GENTYPE
# pragma message("GLM: Use unrestricted genType")
# endif
#endif//GLM_MESSAGES
///////////////////////////////////////////////////////////////////////////////////
// Clip control
#ifdef GLM_DEPTH_ZERO_TO_ONE // Legacy 0.9.8 development
# error Define GLM_FORCE_DEPTH_ZERO_TO_ONE instead of GLM_DEPTH_ZERO_TO_ONE to use 0 to 1 clip space.
#endif
#define GLM_DEPTH_ZERO_TO_ONE 0x00000001
#define GLM_DEPTH_NEGATIVE_ONE_TO_ONE 0x00000002
#ifdef GLM_FORCE_DEPTH_ZERO_TO_ONE
# define GLM_DEPTH_CLIP_SPACE GLM_DEPTH_ZERO_TO_ONE
#else
# define GLM_DEPTH_CLIP_SPACE GLM_DEPTH_NEGATIVE_ONE_TO_ONE
#endif
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_DEPTH_DISPLAYED)
# define GLM_MESSAGE_DEPTH_DISPLAYED
# if GLM_DEPTH_CLIP_SPACE == GLM_DEPTH_ZERO_TO_ONE
# pragma message("GLM: Depth clip space: Zero to one")
# else
# pragma message("GLM: Depth clip space: negative one to one")
# endif
#endif//GLM_MESSAGES
///////////////////////////////////////////////////////////////////////////////////
// Coordinate system, define GLM_FORCE_LEFT_HANDED before including GLM
// to use left handed coordinate system by default.
#ifdef GLM_LEFT_HANDED // Legacy 0.9.8 development
# error Define GLM_FORCE_LEFT_HANDED instead of GLM_LEFT_HANDED left handed coordinate system by default.
#endif
#define GLM_LEFT_HANDED 0x00000001 // For DirectX, Metal, Vulkan
#define GLM_RIGHT_HANDED 0x00000002 // For OpenGL, default in GLM
#ifdef GLM_FORCE_LEFT_HANDED
# define GLM_COORDINATE_SYSTEM GLM_LEFT_HANDED
#else
# define GLM_COORDINATE_SYSTEM GLM_RIGHT_HANDED
#endif
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_HANDED_DISPLAYED)
# define GLM_MESSAGE_HANDED_DISPLAYED
# if GLM_COORDINATE_SYSTEM == GLM_LEFT_HANDED
# pragma message("GLM: Coordinate system: left handed")
# else
# pragma message("GLM: Coordinate system: right handed")
# endif
#endif//GLM_MESSAGES
///////////////////////////////////////////////////////////////////////////////////
// Qualifiers
#if (GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))
# define GLM_DEPRECATED __declspec(deprecated)
# define GLM_ALIGN(x) __declspec(align(x))
# define GLM_ALIGNED_STRUCT(x) struct __declspec(align(x))
# define GLM_ALIGNED_TYPEDEF(type, name, alignment) typedef __declspec(align(alignment)) type name
# define GLM_RESTRICT_FUNC __declspec(restrict)
# define GLM_RESTRICT __restrict
# if GLM_COMPILER >= GLM_COMPILER_VC12
# define GLM_VECTOR_CALL __vectorcall
# else
# define GLM_VECTOR_CALL
# endif
#elif GLM_COMPILER & (GLM_COMPILER_GCC | GLM_COMPILER_CLANG | GLM_COMPILER_INTEL)
# define GLM_DEPRECATED __attribute__((__deprecated__))
# define GLM_ALIGN(x) __attribute__((aligned(x)))
# define GLM_ALIGNED_STRUCT(x) struct __attribute__((aligned(x)))
# define GLM_ALIGNED_TYPEDEF(type, name, alignment) typedef type name __attribute__((aligned(alignment)))
# define GLM_RESTRICT_FUNC __restrict__
# define GLM_RESTRICT __restrict__
# if GLM_COMPILER & GLM_COMPILER_CLANG
# if GLM_COMPILER >= GLM_COMPILER_CLANG37
# define GLM_VECTOR_CALL __vectorcall
# else
# define GLM_VECTOR_CALL
# endif
# else
# define GLM_VECTOR_CALL
# endif
#elif GLM_COMPILER & GLM_COMPILER_CUDA
# define GLM_DEPRECATED
# define GLM_ALIGN(x) __align__(x)
# define GLM_ALIGNED_STRUCT(x) struct __align__(x)
# define GLM_ALIGNED_TYPEDEF(type, name, alignment) typedef type name __align__(x)
# define GLM_RESTRICT_FUNC __restrict__
# define GLM_RESTRICT __restrict__
# define GLM_VECTOR_CALL
#else
# define GLM_DEPRECATED
# define GLM_ALIGN
# define GLM_ALIGNED_STRUCT(x) struct
# define GLM_ALIGNED_TYPEDEF(type, name, alignment) typedef type name
# define GLM_RESTRICT_FUNC
# define GLM_RESTRICT
# define GLM_VECTOR_CALL
#endif//GLM_COMPILER
#if GLM_HAS_DEFAULTED_FUNCTIONS
# define GLM_DEFAULT = default
# ifdef GLM_FORCE_NO_CTOR_INIT
# define GLM_DEFAULT_CTOR = default
# else
# define GLM_DEFAULT_CTOR
# endif
#else
# define GLM_DEFAULT
# define GLM_DEFAULT_CTOR
#endif
#if GLM_HAS_CONSTEXPR || GLM_HAS_CONSTEXPR_PARTIAL
# define GLM_CONSTEXPR constexpr
# if GLM_COMPILER & GLM_COMPILER_VC // Visual C++ has a bug #594 https://github.com/g-truc/glm/issues/594
# define GLM_CONSTEXPR_CTOR
# else
# define GLM_CONSTEXPR_CTOR constexpr
# endif
#else
# define GLM_CONSTEXPR
# define GLM_CONSTEXPR_CTOR
#endif
#if GLM_HAS_CONSTEXPR
# define GLM_RELAXED_CONSTEXPR constexpr
#else
# define GLM_RELAXED_CONSTEXPR const
#endif
#if GLM_ARCH == GLM_ARCH_PURE
# define GLM_CONSTEXPR_SIMD GLM_CONSTEXPR_CTOR
#else
# define GLM_CONSTEXPR_SIMD
#endif
#ifdef GLM_FORCE_EXPLICIT_CTOR
# define GLM_EXPLICIT explicit
#else
# define GLM_EXPLICIT
#endif
///////////////////////////////////////////////////////////////////////////////////
#define GLM_HAS_ALIGNED_TYPE GLM_HAS_UNRESTRICTED_UNIONS
///////////////////////////////////////////////////////////////////////////////////
// Length type
// User defines: GLM_FORCE_SIZE_T_LENGTH GLM_FORCE_SIZE_FUNC
namespace glm
{
using std::size_t;
# if defined(GLM_FORCE_SIZE_T_LENGTH)
typedef size_t length_t;
# else
typedef int length_t;
# endif
}//namespace glm
#if GLM_MESSAGES == GLM_MESSAGES_ENABLED && !defined(GLM_MESSAGE_FORCE_SIZE_T_LENGTH)
# define GLM_MESSAGE_FORCE_SIZE_T_LENGTH
# if defined GLM_FORCE_SIZE_T_LENGTH
# pragma message("GLM: .length() returns glm::length_t, a typedef of std::size_t")
# else
# pragma message("GLM: .length() returns glm::length_t, a typedef of int following the GLSL specification")
# endif
#endif//GLM_MESSAGES
///////////////////////////////////////////////////////////////////////////////////
// countof
#ifndef __has_feature
# define __has_feature(x) 0 // Compatibility with non-clang compilers.
#endif
#if GLM_HAS_CONSTEXPR_PARTIAL
namespace glm
{
template <typename T, std::size_t N>
constexpr std::size_t countof(T const (&)[N])
{
return N;
}
}//namespace glm
# define GLM_COUNTOF(arr) glm::countof(arr)
#elif defined(_MSC_VER)
# define GLM_COUNTOF(arr) _countof(arr)
#else
# define GLM_COUNTOF(arr) sizeof(arr) / sizeof(arr[0])
#endif
///////////////////////////////////////////////////////////////////////////////////
// Uninitialize constructors
namespace glm
{
enum ctor{uninitialize};
}//namespace glm

View file

@ -0,0 +1,67 @@
/// @ref core
/// @file glm/detail/type_float.hpp
#pragma once
#include "setup.hpp"
namespace glm{
namespace detail
{
typedef float float32;
typedef double float64;
}//namespace detail
typedef float lowp_float_t;
typedef float mediump_float_t;
typedef double highp_float_t;
/// @addtogroup core_precision
/// @{
/// Low precision floating-point numbers.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.4 Floats</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef lowp_float_t lowp_float;
/// Medium precision floating-point numbers.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.4 Floats</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef mediump_float_t mediump_float;
/// High precision floating-point numbers.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.4 Floats</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef highp_float_t highp_float;
#if(!defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
typedef mediump_float float_t;
#elif(defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
typedef highp_float float_t;
#elif(!defined(GLM_PRECISION_HIGHP_FLOAT) && defined(GLM_PRECISION_MEDIUMP_FLOAT) && !defined(GLM_PRECISION_LOWP_FLOAT))
typedef mediump_float float_t;
#elif(!defined(GLM_PRECISION_HIGHP_FLOAT) && !defined(GLM_PRECISION_MEDIUMP_FLOAT) && defined(GLM_PRECISION_LOWP_FLOAT))
typedef lowp_float float_t;
#else
# error "GLM error: multiple default precision requested for floating-point types"
#endif
typedef float float32;
typedef double float64;
////////////////////
// check type sizes
#ifndef GLM_STATIC_ASSERT_NULL
GLM_STATIC_ASSERT(sizeof(glm::float32) == 4, "float32 size isn't 4 bytes on this platform");
GLM_STATIC_ASSERT(sizeof(glm::float64) == 8, "float64 size isn't 8 bytes on this platform");
#endif//GLM_STATIC_ASSERT_NULL
/// @}
}//namespace glm

View file

@ -0,0 +1,195 @@
/// @ref core
/// @file glm/detail/type_gentype.hpp
#pragma once
namespace glm
{
enum profile
{
nice,
fast,
simd
};
typedef std::size_t sizeType;
namespace detail
{
template
<
typename VALTYPE,
template <typename> class TYPE
>
struct genType
{
public:
enum ctor{null};
typedef VALTYPE value_type;
typedef VALTYPE & value_reference;
typedef VALTYPE * value_pointer;
typedef VALTYPE const * value_const_pointer;
typedef TYPE<bool> bool_type;
typedef sizeType size_type;
static bool is_vector();
static bool is_matrix();
typedef TYPE<VALTYPE> type;
typedef TYPE<VALTYPE> * pointer;
typedef TYPE<VALTYPE> const * const_pointer;
typedef TYPE<VALTYPE> const * const const_pointer_const;
typedef TYPE<VALTYPE> * const pointer_const;
typedef TYPE<VALTYPE> & reference;
typedef TYPE<VALTYPE> const & const_reference;
typedef TYPE<VALTYPE> const & param_type;
//////////////////////////////////////
// Address (Implementation details)
value_const_pointer value_address() const{return value_pointer(this);}
value_pointer value_address(){return value_pointer(this);}
//protected:
// enum kind
// {
// GEN_TYPE,
// VEC_TYPE,
// MAT_TYPE
// };
// typedef typename TYPE::kind kind;
};
template
<
typename VALTYPE,
template <typename> class TYPE
>
bool genType<VALTYPE, TYPE>::is_vector()
{
return true;
}
/*
template <typename valTypeT, unsigned int colT, unsigned int rowT, profile proT = nice>
class base
{
public:
//////////////////////////////////////
// Traits
typedef sizeType size_type;
typedef valTypeT value_type;
typedef base<value_type, colT, rowT> class_type;
typedef base<bool, colT, rowT> bool_type;
typedef base<value_type, rowT, 1> col_type;
typedef base<value_type, colT, 1> row_type;
typedef base<value_type, rowT, colT> transpose_type;
static size_type col_size();
static size_type row_size();
static size_type value_size();
static bool is_scalar();
static bool is_vector();
static bool is_matrix();
private:
// Data
col_type value[colT];
public:
//////////////////////////////////////
// Constructors
base();
base(class_type const & m);
explicit base(T const & x);
explicit base(value_type const * const x);
explicit base(col_type const * const x);
//////////////////////////////////////
// Conversions
template <typename vU, uint cU, uint rU, profile pU>
explicit base(base<vU, cU, rU, pU> const & m);
//////////////////////////////////////
// Accesses
col_type& operator[](size_type i);
col_type const & operator[](size_type i) const;
//////////////////////////////////////
// Unary updatable operators
class_type& operator= (class_type const & x);
class_type& operator+= (T const & x);
class_type& operator+= (class_type const & x);
class_type& operator-= (T const & x);
class_type& operator-= (class_type const & x);
class_type& operator*= (T const & x);
class_type& operator*= (class_type const & x);
class_type& operator/= (T const & x);
class_type& operator/= (class_type const & x);
class_type& operator++ ();
class_type& operator-- ();
};
*/
//template <typename T>
//struct traits
//{
// static const bool is_signed = false;
// static const bool is_float = false;
// static const bool is_vector = false;
// static const bool is_matrix = false;
// static const bool is_genType = false;
// static const bool is_genIType = false;
// static const bool is_genUType = false;
//};
//template <>
//struct traits<half>
//{
// static const bool is_float = true;
// static const bool is_genType = true;
//};
//template <>
//struct traits<float>
//{
// static const bool is_float = true;
// static const bool is_genType = true;
//};
//template <>
//struct traits<double>
//{
// static const bool is_float = true;
// static const bool is_genType = true;
//};
//template <typename genType>
//struct desc
//{
// typedef genType type;
// typedef genType * pointer;
// typedef genType const* const_pointer;
// typedef genType const *const const_pointer_const;
// typedef genType *const pointer_const;
// typedef genType & reference;
// typedef genType const& const_reference;
// typedef genType const& param_type;
// typedef typename genType::value_type value_type;
// typedef typename genType::size_type size_type;
// static const typename size_type value_size;
//};
//template <typename genType>
//const typename desc<genType>::size_type desc<genType>::value_size = genType::value_size();
}//namespace detail
}//namespace glm
//#include "type_gentype.inl"

View file

@ -0,0 +1,341 @@
/// @ref core
/// @file glm/detail/type_gentype.inl
namespace glm{
namespace detail{
/////////////////////////////////
// Static functions
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::size_type base<vT, cT, rT, pT>::col_size()
{
return cT;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::size_type base<vT, cT, rT, pT>::row_size()
{
return rT;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::size_type base<vT, cT, rT, pT>::value_size()
{
return rT * cT;
}
template <typename vT, uint cT, uint rT, profile pT>
bool base<vT, cT, rT, pT>::is_scalar()
{
return rT == 1 && cT == 1;
}
template <typename vT, uint cT, uint rT, profile pT>
bool base<vT, cT, rT, pT>::is_vector()
{
return rT == 1;
}
template <typename vT, uint cT, uint rT, profile pT>
bool base<vT, cT, rT, pT>::is_matrix()
{
return rT != 1;
}
/////////////////////////////////
// Constructor
template <typename vT, uint cT, uint rT, profile pT>
base<vT, cT, rT, pT>::base()
{
memset(&this->value, 0, cT * rT * sizeof(vT));
}
template <typename vT, uint cT, uint rT, profile pT>
base<vT, cT, rT, pT>::base
(
typename base<vT, cT, rT, pT>::class_type const & m
)
{
for
(
typename genType<vT, cT, rT, pT>::size_type i = typename base<vT, cT, rT, pT>::size_type(0);
i < base<vT, cT, rT, pT>::col_size();
++i
)
{
this->value[i] = m[i];
}
}
template <typename vT, uint cT, uint rT, profile pT>
base<vT, cT, rT, pT>::base
(
typename base<vT, cT, rT, pT>::T const & x
)
{
if(rT == 1) // vector
{
for
(
typename base<vT, cT, rT, pT>::size_type i = typename base<vT, cT, rT, pT>::size_type(0);
i < base<vT, cT, rT, pT>::col_size();
++i
)
{
this->value[i][rT] = x;
}
}
else // matrix
{
memset(&this->value, 0, cT * rT * sizeof(vT));
typename base<vT, cT, rT, pT>::size_type stop = cT < rT ? cT : rT;
for
(
typename base<vT, cT, rT, pT>::size_type i = typename base<vT, cT, rT, pT>::size_type(0);
i < stop;
++i
)
{
this->value[i][i] = x;
}
}
}
template <typename vT, uint cT, uint rT, profile pT>
base<vT, cT, rT, pT>::base
(
typename base<vT, cT, rT, pT>::value_type const * const x
)
{
memcpy(&this->value, &x.value, cT * rT * sizeof(vT));
}
template <typename vT, uint cT, uint rT, profile pT>
base<vT, cT, rT, pT>::base
(
typename base<vT, cT, rT, pT>::col_type const * const x
)
{
for
(
typename base<vT, cT, rT, pT>::size_type i = typename base<vT, cT, rT, pT>::size_type(0);
i < base<vT, cT, rT, pT>::col_size();
++i
)
{
this->value[i] = x[i];
}
}
template <typename vT, uint cT, uint rT, profile pT>
template <typename vU, uint cU, uint rU, profile pU>
base<vT, cT, rT, pT>::base
(
base<vU, cU, rU, pU> const & m
)
{
for
(
typename base<vT, cT, rT, pT>::size_type i = typename base<vT, cT, rT, pT>::size_type(0);
i < base<vT, cT, rT, pT>::col_size();
++i
)
{
this->value[i] = base<vT, cT, rT, pT>(m[i]);
}
}
//////////////////////////////////////
// Accesses
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::col_type& base<vT, cT, rT, pT>::operator[]
(
typename base<vT, cT, rT, pT>::size_type i
)
{
return this->value[i];
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::col_type const & base<vT, cT, rT, pT>::operator[]
(
typename base<vT, cT, rT, pT>::size_type i
) const
{
return this->value[i];
}
//////////////////////////////////////
// Unary updatable operators
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator=
(
typename base<vT, cT, rT, pT>::class_type const & x
)
{
memcpy(&this->value, &x.value, cT * rT * sizeof(vT));
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator+=
(
typename base<vT, cT, rT, pT>::T const & x
)
{
typename base<vT, cT, rT, pT>::size_type stop_col = x.col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = x.row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
this->value[j][i] += x;
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator+=
(
typename base<vT, cT, rT, pT>::class_type const & x
)
{
typename base<vT, cT, rT, pT>::size_type stop_col = x.col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = x.row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
this->value[j][i] += x[j][i];
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator-=
(
typename base<vT, cT, rT, pT>::T const & x
)
{
typename base<vT, cT, rT, pT>::size_type stop_col = x.col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = x.row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
this->value[j][i] -= x;
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator-=
(
typename base<vT, cT, rT, pT>::class_type const & x
)
{
typename base<vT, cT, rT, pT>::size_type stop_col = x.col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = x.row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
this->value[j][i] -= x[j][i];
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator*=
(
typename base<vT, cT, rT, pT>::T const & x
)
{
typename base<vT, cT, rT, pT>::size_type stop_col = x.col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = x.row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
this->value[j][i] *= x;
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator*=
(
typename base<vT, cT, rT, pT>::class_type const & x
)
{
typename base<vT, cT, rT, pT>::size_type stop_col = x.col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = x.row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
this->value[j][i] *= x[j][i];
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator/=
(
typename base<vT, cT, rT, pT>::T const & x
)
{
typename base<vT, cT, rT, pT>::size_type stop_col = x.col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = x.row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
this->value[j][i] /= x;
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator/=
(
typename base<vT, cT, rT, pT>::class_type const & x
)
{
typename base<vT, cT, rT, pT>::size_type stop_col = x.col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = x.row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
this->value[j][i] /= x[j][i];
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator++ ()
{
typename base<vT, cT, rT, pT>::size_type stop_col = col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
++this->value[j][i];
return *this;
}
template <typename vT, uint cT, uint rT, profile pT>
typename base<vT, cT, rT, pT>::class_type& base<vT, cT, rT, pT>::operator-- ()
{
typename base<vT, cT, rT, pT>::size_type stop_col = col_size();
typename base<vT, cT, rT, pT>::size_type stop_row = row_size();
for(typename base<vT, cT, rT, pT>::size_type j = 0; j < stop_col; ++j)
for(typename base<vT, cT, rT, pT>::size_type i = 0; i < stop_row; ++i)
--this->value[j][i];
return *this;
}
} //namespace detail
} //namespace glm

View file

@ -0,0 +1,19 @@
/// @ref core
/// @file glm/detail/type_half.hpp
#pragma once
#include "setup.hpp"
namespace glm{
namespace detail
{
typedef short hdata;
GLM_FUNC_DECL float toFloat32(hdata value);
GLM_FUNC_DECL hdata toFloat16(float const & value);
}//namespace detail
}//namespace glm
#include "type_half.inl"

View file

@ -0,0 +1,244 @@
/// @ref core
/// @file glm/detail/type_half.inl
namespace glm{
namespace detail
{
GLM_FUNC_QUALIFIER float overflow()
{
volatile float f = 1e10;
for(int i = 0; i < 10; ++i)
f *= f; // this will overflow before the for loop terminates
return f;
}
union uif32
{
GLM_FUNC_QUALIFIER uif32() :
i(0)
{}
GLM_FUNC_QUALIFIER uif32(float f_) :
f(f_)
{}
GLM_FUNC_QUALIFIER uif32(uint32 i_) :
i(i_)
{}
float f;
uint32 i;
};
GLM_FUNC_QUALIFIER float toFloat32(hdata value)
{
int s = (value >> 15) & 0x00000001;
int e = (value >> 10) & 0x0000001f;
int m = value & 0x000003ff;
if(e == 0)
{
if(m == 0)
{
//
// Plus or minus zero
//
detail::uif32 result;
result.i = (unsigned int)(s << 31);
return result.f;
}
else
{
//
// Denormalized number -- renormalize it
//
while(!(m & 0x00000400))
{
m <<= 1;
e -= 1;
}
e += 1;
m &= ~0x00000400;
}
}
else if(e == 31)
{
if(m == 0)
{
//
// Positive or negative infinity
//
uif32 result;
result.i = (unsigned int)((s << 31) | 0x7f800000);
return result.f;
}
else
{
//
// Nan -- preserve sign and significand bits
//
uif32 result;
result.i = (unsigned int)((s << 31) | 0x7f800000 | (m << 13));
return result.f;
}
}
//
// Normalized number
//
e = e + (127 - 15);
m = m << 13;
//
// Assemble s, e and m.
//
uif32 Result;
Result.i = (unsigned int)((s << 31) | (e << 23) | m);
return Result.f;
}
GLM_FUNC_QUALIFIER hdata toFloat16(float const & f)
{
uif32 Entry;
Entry.f = f;
int i = (int)Entry.i;
//
// Our floating point number, f, is represented by the bit
// pattern in integer i. Disassemble that bit pattern into
// the sign, s, the exponent, e, and the significand, m.
// Shift s into the position where it will go in in the
// resulting half number.
// Adjust e, accounting for the different exponent bias
// of float and half (127 versus 15).
//
int s = (i >> 16) & 0x00008000;
int e = ((i >> 23) & 0x000000ff) - (127 - 15);
int m = i & 0x007fffff;
//
// Now reassemble s, e and m into a half:
//
if(e <= 0)
{
if(e < -10)
{
//
// E is less than -10. The absolute value of f is
// less than half_MIN (f may be a small normalized
// float, a denormalized float or a zero).
//
// We convert f to a half zero.
//
return hdata(s);
}
//
// E is between -10 and 0. F is a normalized float,
// whose magnitude is less than __half_NRM_MIN.
//
// We convert f to a denormalized half.
//
m = (m | 0x00800000) >> (1 - e);
//
// Round to nearest, round "0.5" up.
//
// Rounding may cause the significand to overflow and make
// our number normalized. Because of the way a half's bits
// are laid out, we don't have to treat this case separately;
// the code below will handle it correctly.
//
if(m & 0x00001000)
m += 0x00002000;
//
// Assemble the half from s, e (zero) and m.
//
return hdata(s | (m >> 13));
}
else if(e == 0xff - (127 - 15))
{
if(m == 0)
{
//
// F is an infinity; convert f to a half
// infinity with the same sign as f.
//
return hdata(s | 0x7c00);
}
else
{
//
// F is a NAN; we produce a half NAN that preserves
// the sign bit and the 10 leftmost bits of the
// significand of f, with one exception: If the 10
// leftmost bits are all zero, the NAN would turn
// into an infinity, so we have to set at least one
// bit in the significand.
//
m >>= 13;
return hdata(s | 0x7c00 | m | (m == 0));
}
}
else
{
//
// E is greater than zero. F is a normalized float.
// We try to convert f to a normalized half.
//
//
// Round to nearest, round "0.5" up
//
if(m & 0x00001000)
{
m += 0x00002000;
if(m & 0x00800000)
{
m = 0; // overflow in significand,
e += 1; // adjust exponent
}
}
//
// Handle exponent overflow
//
if (e > 30)
{
overflow(); // Cause a hardware floating point overflow;
return hdata(s | 0x7c00);
// if this returns, the half becomes an
} // infinity with the same sign as f.
//
// Assemble the half from s, e and m.
//
return hdata(s | (e << 10) | (m >> 13));
}
}
}//namespace detail
}//namespace glm

View file

@ -0,0 +1,306 @@
/// @ref core
/// @file glm/detail/type_int.hpp
#pragma once
#include "setup.hpp"
#if GLM_HAS_MAKE_SIGNED
# include <type_traits>
#endif
#if GLM_HAS_EXTENDED_INTEGER_TYPE
# include <cstdint>
#endif
namespace glm{
namespace detail
{
# if GLM_HAS_EXTENDED_INTEGER_TYPE
typedef std::int8_t int8;
typedef std::int16_t int16;
typedef std::int32_t int32;
typedef std::int64_t int64;
typedef std::uint8_t uint8;
typedef std::uint16_t uint16;
typedef std::uint32_t uint32;
typedef std::uint64_t uint64;
# else
# if(defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)) // C99 detected, 64 bit types available
typedef int64_t sint64;
typedef uint64_t uint64;
# elif GLM_COMPILER & GLM_COMPILER_VC
typedef signed __int64 sint64;
typedef unsigned __int64 uint64;
# elif GLM_COMPILER & GLM_COMPILER_GCC
# pragma GCC diagnostic ignored "-Wlong-long"
__extension__ typedef signed long long sint64;
__extension__ typedef unsigned long long uint64;
# elif (GLM_COMPILER & GLM_COMPILER_CLANG)
# pragma clang diagnostic ignored "-Wc++11-long-long"
typedef signed long long sint64;
typedef unsigned long long uint64;
# else//unknown compiler
typedef signed long long sint64;
typedef unsigned long long uint64;
# endif//GLM_COMPILER
typedef signed char int8;
typedef signed short int16;
typedef signed int int32;
typedef sint64 int64;
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef uint64 uint64;
#endif//
typedef signed int lowp_int_t;
typedef signed int mediump_int_t;
typedef signed int highp_int_t;
typedef unsigned int lowp_uint_t;
typedef unsigned int mediump_uint_t;
typedef unsigned int highp_uint_t;
# if GLM_HAS_MAKE_SIGNED
using std::make_signed;
using std::make_unsigned;
# else//GLM_HAS_MAKE_SIGNED
template <typename genType>
struct make_signed
{};
template <>
struct make_signed<char>
{
typedef char type;
};
template <>
struct make_signed<short>
{
typedef short type;
};
template <>
struct make_signed<int>
{
typedef int type;
};
template <>
struct make_signed<long>
{
typedef long type;
};
template <>
struct make_signed<unsigned char>
{
typedef char type;
};
template <>
struct make_signed<unsigned short>
{
typedef short type;
};
template <>
struct make_signed<unsigned int>
{
typedef int type;
};
template <>
struct make_signed<unsigned long>
{
typedef long type;
};
template <typename genType>
struct make_unsigned
{};
template <>
struct make_unsigned<char>
{
typedef unsigned char type;
};
template <>
struct make_unsigned<short>
{
typedef unsigned short type;
};
template <>
struct make_unsigned<int>
{
typedef unsigned int type;
};
template <>
struct make_unsigned<long>
{
typedef unsigned long type;
};
template <>
struct make_unsigned<unsigned char>
{
typedef unsigned char type;
};
template <>
struct make_unsigned<unsigned short>
{
typedef unsigned short type;
};
template <>
struct make_unsigned<unsigned int>
{
typedef unsigned int type;
};
template <>
struct make_unsigned<unsigned long>
{
typedef unsigned long type;
};
template <>
struct make_signed<long long>
{
typedef long long type;
};
template <>
struct make_signed<unsigned long long>
{
typedef long long type;
};
template <>
struct make_unsigned<long long>
{
typedef unsigned long long type;
};
template <>
struct make_unsigned<unsigned long long>
{
typedef unsigned long long type;
};
# endif//GLM_HAS_MAKE_SIGNED
}//namespace detail
typedef detail::int8 int8;
typedef detail::int16 int16;
typedef detail::int32 int32;
typedef detail::int64 int64;
typedef detail::uint8 uint8;
typedef detail::uint16 uint16;
typedef detail::uint32 uint32;
typedef detail::uint64 uint64;
/// @addtogroup core_precision
/// @{
/// Low precision signed integer.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.3 Integers</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef detail::lowp_int_t lowp_int;
/// Medium precision signed integer.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.3 Integers</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef detail::mediump_int_t mediump_int;
/// High precision signed integer.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.3 Integers</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef detail::highp_int_t highp_int;
/// Low precision unsigned integer.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.3 Integers</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef detail::lowp_uint_t lowp_uint;
/// Medium precision unsigned integer.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.3 Integers</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef detail::mediump_uint_t mediump_uint;
/// High precision unsigned integer.
/// There is no guarantee on the actual precision.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.3 Integers</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.7.2 Precision Qualifier</a>
typedef detail::highp_uint_t highp_uint;
#if(!defined(GLM_PRECISION_HIGHP_INT) && !defined(GLM_PRECISION_MEDIUMP_INT) && !defined(GLM_PRECISION_LOWP_INT))
typedef mediump_int int_t;
#elif(defined(GLM_PRECISION_HIGHP_INT) && !defined(GLM_PRECISION_MEDIUMP_INT) && !defined(GLM_PRECISION_LOWP_INT))
typedef highp_int int_t;
#elif(!defined(GLM_PRECISION_HIGHP_INT) && defined(GLM_PRECISION_MEDIUMP_INT) && !defined(GLM_PRECISION_LOWP_INT))
typedef mediump_int int_t;
#elif(!defined(GLM_PRECISION_HIGHP_INT) && !defined(GLM_PRECISION_MEDIUMP_INT) && defined(GLM_PRECISION_LOWP_INT))
typedef lowp_int int_t;
#else
# error "GLM error: multiple default precision requested for signed integer types"
#endif
#if(!defined(GLM_PRECISION_HIGHP_UINT) && !defined(GLM_PRECISION_MEDIUMP_UINT) && !defined(GLM_PRECISION_LOWP_UINT))
typedef mediump_uint uint_t;
#elif(defined(GLM_PRECISION_HIGHP_UINT) && !defined(GLM_PRECISION_MEDIUMP_UINT) && !defined(GLM_PRECISION_LOWP_UINT))
typedef highp_uint uint_t;
#elif(!defined(GLM_PRECISION_HIGHP_UINT) && defined(GLM_PRECISION_MEDIUMP_UINT) && !defined(GLM_PRECISION_LOWP_UINT))
typedef mediump_uint uint_t;
#elif(!defined(GLM_PRECISION_HIGHP_UINT) && !defined(GLM_PRECISION_MEDIUMP_UINT) && defined(GLM_PRECISION_LOWP_UINT))
typedef lowp_uint uint_t;
#else
# error "GLM error: multiple default precision requested for unsigned integer types"
#endif
/// Unsigned integer type.
///
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 4.1.3 Integers</a>
typedef unsigned int uint;
/// @}
////////////////////
// check type sizes
#ifndef GLM_STATIC_ASSERT_NULL
GLM_STATIC_ASSERT(sizeof(glm::int8) == 1, "int8 size isn't 1 byte on this platform");
GLM_STATIC_ASSERT(sizeof(glm::int16) == 2, "int16 size isn't 2 bytes on this platform");
GLM_STATIC_ASSERT(sizeof(glm::int32) == 4, "int32 size isn't 4 bytes on this platform");
GLM_STATIC_ASSERT(sizeof(glm::int64) == 8, "int64 size isn't 8 bytes on this platform");
GLM_STATIC_ASSERT(sizeof(glm::uint8) == 1, "uint8 size isn't 1 byte on this platform");
GLM_STATIC_ASSERT(sizeof(glm::uint16) == 2, "uint16 size isn't 2 bytes on this platform");
GLM_STATIC_ASSERT(sizeof(glm::uint32) == 4, "uint32 size isn't 4 bytes on this platform");
GLM_STATIC_ASSERT(sizeof(glm::uint64) == 8, "uint64 size isn't 8 bytes on this platform");
#endif//GLM_STATIC_ASSERT_NULL
}//namespace glm

Some files were not shown because too many files have changed in this diff Show more